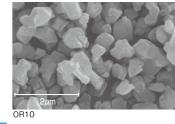
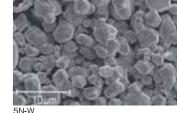
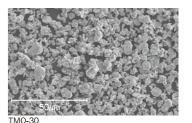


Head Office


1-11-11, Shiba, Minato-ku, Tokyo, 105-0014 JAPAN TEL +81-3-5418-1807 FAX +81-3-5418-1811


2 Tungsten carbide powder (WC)

Manufactured under rigorous quality control in a wide range of types; standard, ultrafine (WC02NP / $0.1 \mu m$), uniform particle size distribution and low-volume. Used as raw materials of carbide tools according to diver-


3 Carbide and carbonitride powders

Raw materials of cermets, and additives of carbide tools.

1 Tungsten powder (W,WO₃)

High quality tungsten powder of controlled purity (5N-W / 99.999% min.) and particle size used as electrode materials (metallizing and sputtering targets) of VLSI, tools, sintered parts, raw materials of weights, etc. Tungsten trioxide powder (WO3) is recommended for optical applications, high dielectric constant ceramics and other new industrial materials.

4 Molybdenum powders (Mo,MoO₃)

Purity and composition controlled to meet various needs. Used for such applications as VLSI, ceramic packages, metallizing and sputtering targets. Molybdenum trioxide powder (MoO_3) is recommended for pigments, coloring and catalysts.

5 Cemented carbide precision knife

High-precision, thin-bladed cutters that realize high cutting speed and high efficiency for ceramic green sheets, slitter knives to cut aluminum electrolytic capacitors, magnetic tapes, paper, plastics and metals and other

6 Cemented carbide wires

For dot matrix printers.

7 Cemented carbide tips (various types of shape)

Cutting, wear-resistant, shock-resistant, mining tools.

Hyper Materials

Materials chosen to give life to atoms. Technology of A.L.M.T.

	LSI computers	Information communications	Electrical machinery electron tube lighting	Automobiles electric trains	Electric power furnace materials structural materials	Tools molds machines	Medical
1 Tungsten powder (W,WO ₃)							
2 Tungsten carbide powder (WC)							
3 Carbide and carbonitride powders							
4 Molybdenum powders (Mo,MoO ₃)							
5 Cemented carbide precision knife							
6 Cemented carbide wires							
7 Cemented carbide tips (various types of shape)							

1 | Hyper Materials Hyper Materials | 2

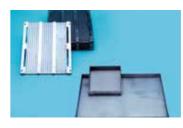
Tungsten/molybdenum wires and rods

Used for lighting, electron tubes, heaters, grids, mandrels, springs, anchors, supports and other various applications. Also the high wear resistance makes these materials suitable for impact dot matrix print wires, probe pins for semiconductor inspection and similar applications.

9 Heat-resistant molybdenum wires and rods (TEM)

High recrystallization temperature, improved shock resistance and high-temperature deformation resistance at room temperature after recrystallization.

Coils and boats for vacuum evaporation


Tungsten products with high melting points and excellent corrosion resistance.

Tungsten and molybdenum crucibles

The high-density and uniform metal structure has realized crucibles of larger size and longer life. Most suitable for single crystal growth.

Spun crucibles (molybdenum) Sintered crucibles (molybdenum, tungsten)

18 Molybdenum trays

For sintering rare-earth magnets, atomic fuels, etc.

19 Molybdenum meshes

Setting for gas venting sintering of ceramics, etc., and furnace parts, such as heaters.

11 Plated wires and corona wires

Various kinds of plating such as gold and platinum, corona wires with terminals and oxidized surface. Used for printers, copiers, air cleaners, etc.

Platinum clad molybdenum wires and rods

For clad wires, rods and processed products of transmitting tubes. (wire diameter $0.15{\sim}3.0$ mm, platinum coating rate 20wt%)

13 Parts for lamps

Tungsten and molybdenum parts for high pressure mercury, xenon, metal halide, and general halogen lamps.

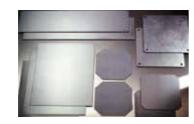
High-temperature furnace parts, electrodes, ion implantation and vacuum parts

Special-purpose products of tungsten and molybdenum.

21 Parts for CT scans

High-precision parts made by taking advantage of such characteristics of tungsten and molybdenum as high radiation shielding and stiffness.

Used for medical equipment that requires high reliability such as collimators in CT scanners.


High performance heatspreader materials

Wide range of materials with high thermal conductivity that can flexibly control the coefficient of thermal expansion matched with peripheral parts.

Tungsten and molybdenum sheets/plates

Playing an active role in high-temperature furnaces, electrical and semiconductor fields as high-temperature-resistant materials with small thermal expansion coefficients.

Heat-resistant and high-temperature deformation resistant molybdenum sheets / plates (TEM/DMB)

Enhanced recrystallization embrittlement resistance, high-temperature deformation resistance, room-temperature impact resistance (room-temperature plastic working possible) and high-temperature strength.TEM: Used for heaters, reflectors, boats, setters for MIM, etc.DMB: Used for setters for sintering ceramic parts, etc.

Ceramic-coated molybdenum sheets/plates

Ceramic-coated molybdenum setters for the purpose of preventing adhesion. (Products developed for sintering MIM parts.)

High-density tungsten heavy metal alloys

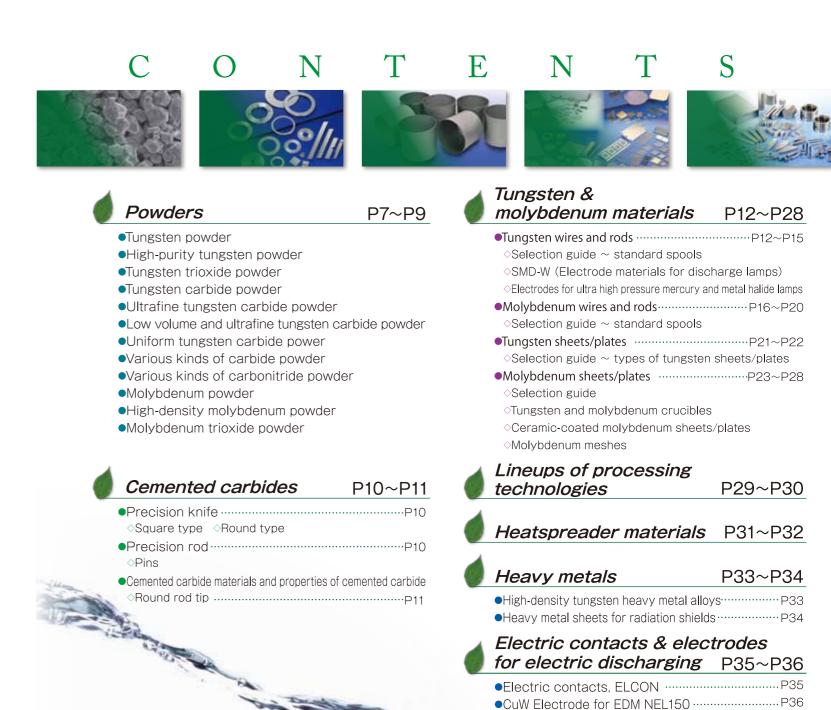
Heavy metal alloys with high density, high heat resistance, and high mechanical strength. Application suitable for radiation shield, weights, and balances.

24 Electric contacts, ELCON

Compound materials consist of highly conductive metals such as silver, copper, heat & arc resistance materials tungstengraphite, and other metal oxides.

25 CuW electrode for EDM NEL 150

High quality electrode enabling to achieve higher speed, lower wear, and higher precision.

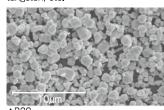

	LSI computers	Information communications	Electrical machinery electron tube lighting	Automobiles electric trains	Electric power furnace materials structural materials	Tools molds machines	Medical
8 Tungsten/molybdenum wires and rods							
9 Heat-resistant molybdenum wires and rods (TEM)							
10 Coils and boats for vacuum evaporation							
111 Plated wires and corona wires							
12 Platinum clad molybdenum wires and rods							
13 Parts for lamps							
14 Tungsten and molybdenum sheets/plates							
Heat-resistant and high-temperature deformation resistant molybdenum sheets/plates (TEM/DMB)							
16 Ceramic-coated molybdenum sheets/plates							

	LSI computers	Information communications	Electrical machinery electron tube lighting	Automobiles electric trains	Electric power furnace materials structural materials	Tools molds machines	Medical
17 Tungsten and molybdenum crucibles							
18 Molybdenum trays							
19 Molybdenum meshes							
High-temperature furnace parts, electrodes, ion implantation and vacuum parts							
21 Parts for CT scans							
22 High performance heatspreader materials							
23 High-density tungsten heavy metal alloys							
24 Electric contacts, ELCON							
25 CuW electrode for EDM NEL 150							

Characteristics of W and Mo	Tungsten(W)	Molybdenum(Mo)
Physical properties		
Atomic number	74	42
Atomic weight	183.85	95.94
Crystal structure	Body-centered cubic lattice	Body-centered cubic lattice
Lattice constant (Å)	3.1647(20°C)	3.146(21℃)
Melting point (°C)	3410±10	2620±10
Boiling point (°C)	Approx. 5900	4827
Density (g/cm³)	19.3	10.2
Electrical resistance(μΩ·cm)	5.5 (20°C)	5.78(27℃)
Coefficient of linear expansion(10 ⁻⁶ /°C)	4.44(27°C)	5.1 (27℃)
Chemical properties	(1) Appreciably stable at ordinary temperatures, but oxidizes to such an extent that the surface gloss is lost. Reacts mainly with O2, CO, N2, H2O and hydrocarbon at high temperatures, but does not react with mercury vapor and hydrogen. (2) Makes higher oxide (WO3) through lower oxide, such as W3O, WO2 and W20O58, with increasing temperatures when reacting with oxygen or air. (3) Unaffected by water, but affected by water vapor in a red-hot state to make WO3. (4) Drastically reacts with a mixed solution of nitric acid and hydrofluoric acid. (5) Has reducibility at searing temperatures. Makes compound (WS2) upon ignition with sulfur, and forms compound (W3P4) when passed through phosphorus vapor.	(1)Does not react with dry oxygen at ordinary temperatures, but rapidly oxidizes at 500°C or above.Becomes white-mouse-gray volatile MoO3 at 650°C or above. (2)Easily combines with sulfur, carbon or silicon at high temperatures to make MoS2, Mo2C and MoS12, etc. (3)Has a strong affinity to arsenic. (4)Hardly affected by hydrofluoric acid, hydrochloric acid and sulfuric acid at 20°C but severely affected by nitric acid, mixed solutions of high-concentration sulfuric acid and aqua regia.

Full lineup of functional materials and products by mixing up the technology of powder metallurgy and metal fabrication.

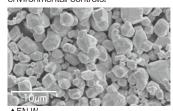
P37~P38


Safety precautions

Tungsten/molybdenum metal powders and compound powders are used as raw materials of various electronic parts and tools, taking advantage of such features as resistance to high temperatures, high hardness and high density. Our integrated production system from raw materials to final products realizes manufacturing and sales of a variety of high quality and highly reliable products assured by our advanced evaluation and analysis technology. We also offer such services as proposals of products that are best suited for purposes of use and flexible product design according to needs of customers, and promote aggressive development of new materials in pursuit of new functions.

Tungsten powder

Tungsten powder is manufactured under strict quality control as raw materials of high density composites diamond tools, metallizing paste, sintered parts of tungsten, etc.


Standard W powder

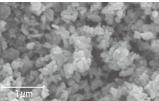
Type	Particle size(µm)	W(%)	0(%)	Fe(%)	Mo(%)	NVR*(%)
A 20	0.5~0.6	≥99.9	≦0.60	≦0.02	≦0.02	≦0.01
A 30	0.6~0.8	≥99.9	≦0.60	≦0.02	≦0.02	≦0.01
B 10	1.0~1.3	≥99.9	≦0.40	≦0.02	≦0.02	≦0.01
B 20	1.0~1.5	≥99.9	≦0.20	≦0.02	≦0.02	≦0.01
B 30	1.4~1.7	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
C 10	1.7~2.0	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
C 20	1.9~2.2	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
C 30	2.1~2.5	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
C 40	2.3~2.8	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
C 50	2.8~3.4	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
C 60	3.1~3.6	≥99.9	≦0.15	≦0.02	≦0.02	≦0.01
D 10	3.6~4.4	≥99.9	≦0.10	≦0.02	≦0.02	≦0.01
D 20	4.5~7.5	≥99.9	≦0.10	≦0.02	≦0.02	≦0.01
D100	7.6~12	≧99.9	≦0.10	≦0.02	≦0.02	≦0.01

"Particle size" is the average particle diameter according to the fischer method. "NVR" is the part remaining after heating in hydrogen chloride air current. "W" is the part remaining after subtracting Fe, Mo and NVR from 100.

High-purity tungsten powder /

High-purity tungsten powder that is extremely low in radioactive elements and alkali metals is manufactured by our excellent purifying technology and strict environmental controls.

	Type	W(%)	Na(ppm)	K(ppm)					
	4N-W ≥99.99		≦10	≦10					
Typical ≥99.99		≥99.99	5	3					
	*Particle sizes in a range of 1.0 - 5.0 m are available upon request								

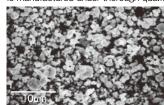

■5N-W

Type	W(%)	Na(ppm)	K(ppm)	U(ppb)	Th(ppb)
5N-W	≥99.999	≦1	≦1	≦1	≦1
Typical	≧99.999	0.08	0.04	0.2	0.5

*Particle sizes in a range of 1.0 - 5.0μm are available upon request.

Tungsten trioxide powder /

High-purity tungsten trioxide powder is manufactured by chemical refinement of tungsten material. It is used for optical applications, high dielectric constant ceramics and other new industrial materials.

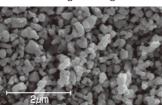


■High-purity WO₃ powder

Type	Type Particle size(μm)		NVR(%)	Fe(%)	Mo(%)
A ₂ -WO ₃ 7~12 ≥99.		≥99.9	≦0.010	≦0.001	≦0.010
Сз-WОз	15~20	≧99.9	≦0.010	≦0.001	≦0.010
F1-WO3	0.5~1.2	≧99.9	≦0.010	≦0.002	≦0.010

Tungsten carbide powder /

Tungsten carbide powder that is used for cemented carbide, cermet diamond tools, electric contacts, etc. is manufactured under thorough quality control.


	Standard WC powder										
,	Type	Particle size (µm)	WC(%)	T.C(%)	F.C(%)	Fe(%)	Mo(%)	NVR*(%)			
	WC 10	0.9~1.1	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 12	1.1~1.3	≧99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 15	1.3~1.8	≧99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 20	1.8~2.2	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 25	2.2~2.8	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 30	2.8~3.3	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 35	3.3~3.8	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 40	3.7~4.4	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 45	4.2~5.0	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			
	WC 60	5.0~7.1	≥99.8	6.13±0.05	≦0.10	≦0.05	≦0.02	≦0.01			

[&]quot;Particle size" is the average particle diameter according to the fischer method.

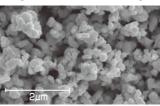
Ultrafine tungsten carbide powder

High-hardness and high-strength ultrafine tungsten carbide powder for cemented carbide is manufactured by direct carburization reaction of tungsten oxide and carbon powder.

In particular, we have developed the WCP Series (low volume powder) that has the reduced number of agglomerates and increased apparent density with the particle size unchanged. This feature contributes to reduction of the alloy shrinkage during cemented carbide sintering to make this material ideal for such tools as micro drills and endmills that require higher hardness and higher strength.

■Ultrafine WC powder

	Type	Particle size(µm)	T.C(%)	F.C(%)	Fe(%)	Mo(%)	Additive
	WC02N	%0.10~0.13	6.20±0.05	≦0.20	≦0.02	≦0.02	Grain growth inhibitor
<u> </u>	WCO4N	0.45~0.49	6.20±0.05	≦0.15	≦0.02	≦0.02	Grain growth inhibitor
powder	WC05N	0.50~0.55	6.20±0.05	≦0.15	≦0.02	≦0.02	Grain growth inhibitor
	WC02NR	%0.10~0.14	6.10~6.25	≦0.25	≦0.02	≦0.02	_
Standard	WC04NR	0.45~0.49	6.15±0.05	≦0.15	≦0.02	≦0.02	_
g a	WC05NR	0.50~0.55	6.15±0.05	≦0.15	≦0.02	≦0.02	_
ြဟ	WC06NR	0.56~0.65	6.15±0.05	≦0.15	≦0.02	≦0.02	_
	WC07NR	0.55~0.70	6.15±0.05	≦0.15	≦0.02	≦0.02	_
Þ	WC02NP	%0.10~0.13	6.20±0.05	≦0.20	≦0.02	≦0.02	Grain growth inhibitor
powder	WC04NP	0.45~0.49	6.20±0.05	≦0.15	≦0.02	≦0.02	Grain growth inhibitor
	WC05NP	0.50~0.55	6.20±0.05	≦0.15	≦0.02	≦0.02	Grain growth inhibitor
늘	WC02NRP	%0.10∼0.14	6.10~6.25	≦0.25	≦0.02	≦0.02	_
-ow volume	WC04NRP	0.45~0.49	6.15±0.05	≦0.15	≦0.02	≦0.02	_
اگا	WC05NRP	0.50~0.55	6.15±0.05	≦0.15	≦0.02	≦0.02	_


"Particle size" is the average particle diameter according to the fischer method.

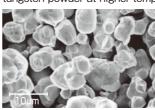
The * mark shows the particle diameter converted by the BET method

Low volume and Ultrafine tungsten carbide powder

Low volume ultrafine tungsten carbide powder has been realized by secondary particles that are primary particles made finer as Cr dissolved and diffused in the tungsten phase loses its solubility and precipitates during carburization reaction.

In particular, we have developed WCR06J that has the reduced number of agglomerates and increased apparent density with the particle size unchanged, which enables it to further reduce the alloy shrinkage

▲WCR06

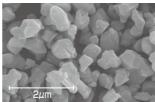

Low volume and Ultrafine WC powder

Type Particle size(μm)		T.C(%)	F.C(%)	Fe(%)	Mo(%)	Cr(%)
WCR07	0.65~0.95	6.10~6.20	≦0.10	≦0.05	≦0.02	0.80~0.90
WCR15	1.2 ~1.8	6.10~6.20	≦0.10	≦0.05	≦0.02	0.80~0.90
WCR06J	0.55~0.65	6.10~6.20	≦0.10	≦0.05	≦0.02	0.80~0.90

"Particle size" is the average particle diameter according to the fischer method. *Consult with us about particle size and volume of grain growth inhibitor.

For shock resistant tools Uniform tungsten carbide powder

Uniform tungsten carbide powder with narrow particle-size distribution and advanced singlecrystallization is manufactured by carbonizing tungsten powder at higher temperatures.


▲WC609

■Uniform WC powder

Type	Particle size(µm)	WC(%)	T.C(%)	F.C(%)	Fe(%)	Mo(%)	NVR*(%)
WC 25U	2.4~3.2	≥99.8	6.13±0.05	≦0.10	≦0.02	≦0.02	≦0.01
WC 30S	2.5~3.5	≥99.8	6.15±0.03	≦0.05	≦0.02	≦0.02	≦0.01
WC 35U	3.2~3.8	≥99.8	6.13±0.05	≦0.10	≦0.02	≦0.02	≦0.01
WC 40S	4.0~5.0	≥99.8	6.15±0.03	≦0.05	≦0.02	≦0.02	≦0.01
WC 45S	4.5~5.5	≥99.8	6.13±0.05	≦0.10	≦0.02	≦0.02	≦0.01
WC 60S	6.0~7.0	≧99.8	6.15±0.03	≦0.05	≦0.02	≦0.02	≦0.01
WC 70S	7.0~8.0	≧99.8	6.13±0.05	≦0.10	≦0.02	≦0.02	≦0.01
WC 80S	8.0~10.0	≥99.8	6.15±0.03	≦0.05	≦0.02	≦0.02	≦0.01
WC 100S	14~16	≧99.8	6.15±0.03	≦0.05	≦0.02	≦0.02	≦0.01

*NVR: Non Volatile Residue by Chlorination

Various kinds of carbide powders /

▲0R10

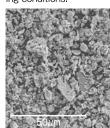
■TiC.ZrC.Cr₃C₂.VC.(W.Ti) C powders

, ,	O,(,, O)		_					
Description	Composition	Type	Particle size (µm)	T.C(%)	F.C(%)	N(%)	0(%)	Fe(%)
Titanium carbide powder	TiC	OR06	0.60~1.1	18.00~19.50	≦0.30	≦0.30	≦2.00	≦0.02
Zirconium carbide powder	ZrC	OV25	2.1 ~3.0	10.90~11.50	≦0.40	≦1.00	≦0.50	≦0.10
Chromium carbide powder	Cr3C2	OR15	1.0 ~2.0	13.00~13.50	_	≦0.10	≦0.80	_
Vanadium carbide powder	VC	OR10	≦1.2	≥16.50	≦0.50	≦0.50	≦0.70	≦0.10
Double carbide powder	(W.Ti)C(70/30)	DC30	2.5 ~3.5	9.70~10.00	≦0.10	≦0.10	≦0.20	≦0.10

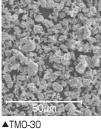
Consult with us about composition, particle size, carbon value and nitrogen value.

*NVR: Non Volatile Residue by Chlorination

[&]quot;T.C" other than the above is also available upon request "W" is the part remaining after subtracting F.C, Fe and Mo from 100.


Various kinds of carbonitride powders

Description	Composition	Туре	Particle size (µm)	T.C(%)	F.C(%)	N(%)	0(%)	Fe(%)
Titanium carbonitride powders	TiCo.5No.5	50R08	0.70~1.0	9.70~10.00	≦0.40	10.20~11.60	≦1.00	≦0.10
		5MP15	1.1 ~1.5	9.70~10.00	≦0.30	10.20~11.00	≦1.00	≦0.10
		5MP30	2.6 ~3.5	9.70~10.00	≦0.30	10.20~11.00	≦1.00	≦0.10
Zirconium carbonitride powders	ZrC _{0.5} N _{0.5}	50V25	2.0 ~3.0	5.30 ~ 5.80	≦0.20	6.30~ 6.90	≦0.50	≦0.10


Consult with us about composition, particle size, carbon value and nitrogen value.

Molybdenum powders

3N-Mo powder is high purity powder with a particle size of $0.8\mu m$ to $6.0\mu m$ manufactured by using highgrade Mo materials and controlling the manufacturing conditions.

turing process control.

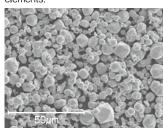
4N-Mo powder is manufactured by using four nines 4N-Mo powder of Mo materials and preventing contamination of

metal impurities of Fe, Ni, etc. under strict manufac-

■3N-Mo powder

Туре	Particle size(µm)	RL(%)	Fe(%)	NVR(%)	Mo(%)							
TMO-10	0.8~1.7	≦1.0	≦0.01	≦0.1	≥99.9							
TMO-20	1.8~2.7	≦1.0	≦0.01	≦0.1	≥99.9							
TMO-30	2.8~3.7	≦0.1	≦0.01	≦0.1	≥99.9							
TMO-40	3.8~4.7	≦0.1	≦0.01	≦0.1	≥99.9							
TMO-50	4.8~6.0	≦0.1	≦0.01	≦0.1	≥99.9							

"Mo" is the part remaining after subtracting Fe and NVR from 100.


-	Type	Particle size(µm)	RL(%)	Mo(%)
	4N-Mo	3.5~5.5	≦0.15	≧99.99

"Mo" is the part remaining after subtracting the 13 elements in the table on the under side from 100.

Element	AI (ppm)	Ca (ppm)	Cr (ppm)	Cu (ppm)	Fe (ppm)	Mg (ppm)	Mn (ppm)	Ni (ppm)	Pb (ppm)	Si (ppm)	Sn (ppm)	Na (ppm)	K (ppm)
Typical	<5	<1	2	1	8	<1	<1	5	<5	<10	<3	5	35

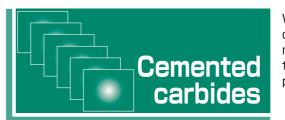
High-density molybdenum powder

This is used as molybdenum powder most suitable for ceramic packages, metallizing paste and sputtering targets due to characteristics such as high green density, lower shrinkage during pressing and low gas

▲HDM

	Spec value	Typical
Particle size(µm)	≧4.0	5.0
Purity (%)	≥99.95	≥99.95
Oxygen(%)	≦0.15	0.05
Fe (%)	≦0.015	0.006
NVR (%)	≦0.10	0.003
FV(cm ³ /100g)	≦47	39
TV(cm3/100g)	≦ 22	19.4

"Mo" is the part remaining after subtracting Fe and NVR from 100.


Molybdenum trioxide powder

Molybdenum oxide used for pigments, coloring and

-ligh-puri	ty Mo	003 tri	ioxide	e powd	er

Type	AI (ppm)	Ca (ppm)	Cr (ppm)	Cu (ppm)	Fe (ppm)	Mg (ppm)	Mn (ppm)	Ni (ppm)	Pb (ppm)	Si (ppm)	Sn (ppm)	Particle size (µm)	IL (%)
МоОз-1	≦15	≦15	≦15	≦15	≦15	≦15	≦15	≦15	≦15	≦15	≦15	10~20	≦0.3
MoOз-2	≦20	≦20	≦20	≦20	≦50	≦20	≦20	≦20	≦30	≦150	≦60	1~5	≦0.6

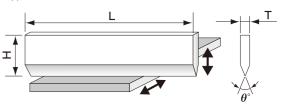
In addition to the above, consult with us about manufacturing of intermediate (low-grade) oxides.

We offer total manufacturing from tungsten carbide powder up to cemented carbide. Our carbide manufactured by technology accumulated over many years, high-level quality controls, and manufacturing methods suitable for various applications will assist you in productivity improvements.

Precision knife

Square type

(Features of the products)


- Maintains sharp edges over long-time cutting.
- Realizes chipping "submicron" by the micropolishing technology.
- Realizes a minimum thickness of 0.05 mm and high straightness by the ultra-high-precision machining technology.
- 150 to 300 times longer life than SUS materials.
- Cutter replacement intervals extended substantially.

(Unit:mm) 0.05~ 18~27 Н 30~250 θ 10°~90° Edge shape | Single-edged , Double-edged , Stepped , 2-stage , 3-stage

*Contact us for dimensions other than the above.

(Examples of application of products)

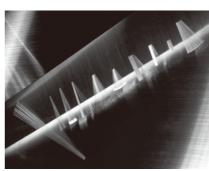
- ☆Ceramic capacitors (green sheets)
- ☆For tape
- ☆For film
- ☆Fibers

Round type

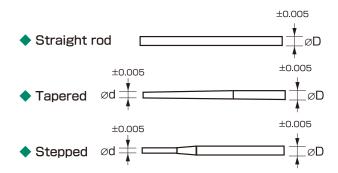
Our cemented carbide slitters are excellent cutters for magnetic tape, capacitors, paper, plastics and metals and offer good durability 10 times greater than that of steel.

Cemented carbide slitter knife units are also manu-

Metal-slitting saws are used for metal-slitting of magnetic heads, frames of glasses, etc.


*Designed and manufactured according to your requirements.

Precision rod


Pins

Not only small-diameter pins for ultra-high-precision jigs and tools for manufacturing semiconductorrelated products, but also dot pins for dot printers, punch pins and so on are widely manufactured by using high-hardness and high-strength materials.

Cemented carbide wires

Material	Transverse rupture strength/GPa	Hardness/HRA	Application
FM10K	3.3	91.5	For mold pin
FM70S	4.0	88.5	For dot pin

Hyper Materials | 10 9 | Hyper Materials

Cemented carbide materials and Properties of cemented carbide

Round rod tip

Туре	Hardness/HRA	Transverse rupture strength/GPa	Application	Microstructure
H10	92.5	2.1	Cutting tools for cast iron Cutting tools for nonferrous metals	—————————————————————————————————————
FM10K	91.5	3.3	● For microtools such as end	
FM20K	90.0	3.4	mills, taps, and drills	
FM21K	89.0	2.9	• For cutting edges for ceramic	
FM70S	88.5	4.0	capacitors, metal foils, magnetic tapes, paper, resin films, etc. Punch pin, Dot pin	I 10um →

Tungsten and molybdenum have a high melting point, low thermal expansion rate and are extremely stable materials in a vacuum. They are used widely in many fields of electronics such as electrodes, heat and radiation shielding and in lighting filaments. Our tungsten and molybdenum products are made directly from raw materials into the processed products - which are subject to strict quality control using high quality analytical instruments and rigorous evaluation of the production process. In addition we have different sizes and types of powder, and variations on finishing and processing so the performance is optimized and best suited to the product at hand.

Tungsten wires and rods

Product selection guide

|--|

		Application	Non-sag	Shock resistance	Machinability	Discharge ability	Discharge consumption resistance	Wear resistance	Corrosion resistance (VM)
	AW	Filaments for halogen lamps (thinner), Grids, Supports, Heaters and Corona wires	0	0	0	Δ	0	0	\triangle
	AX	Filaments for ultrahigh temperature halogen lamps (thicker)	0	0	0	\triangle	0	0	\triangle
	EX	Vacuum evaporation, Heaters for high-temperature furnaces, Print wires for printers, Supports, Discharge electrodes and Probe pins	0	0	0	\triangle	0	0	0
W	DW	Electrodes, EDM wires and Filaments for thermionic emission	0	0	0	0	0	0	\triangle
	CY (PFW)	Structural materials and Heaters for furnaces	\triangle	\triangle	0	\triangle	\triangle	0	0
	EP	Discharge electrodes, Structural materials and Pressure welded electrodes	0	\triangle	©	Δ	0	0	\triangle
	KT	Discharge electrodes and Structural materials	0	\triangle	0	\triangle	0	0	\triangle
	4N-W 5N-W	Electrodes and Heaters	\triangle	\triangle	0	\triangle	0	0	0

■Product lines

AW is a non-sag tungsten material that has been developed for various kinds of lamps including halogen lamps and is widely used not only throughout the domestic market but also in overseas markets. This material is highly resistant to high-temperature deformation, blackening and shocks, has a long life, contains little impure gas and has excellent coiling ability at room temperature. Besides filaments, AW can be used for supports, grids, heaters, etc.

AX is a high-quality tungsten material having been developed as a filament for ultrahigh temperature halogen lamps. Compared with conventional materials, the recrystallization temperature is 50 to 200°C higher, and the dope holes are smaller. Moreover, the length of the crystal structure after recrystallization is 3 to 4 times longer, and the non-sag property has been substantially improved. Also, the tensile strength can be adjusted for each size, and coiling ability is considerably superior. In particular, the britteness of the thicker sizes has been greatly improved, and sizes no larger than D 1.0mm can be processed at room temperature, and can be used for heaters for high-temperature furnaces.

EX has been developed as a filament material for vacuum evaporation of metal materials. It is the world's top-class long-life filament material, contains little impure gas, excels in high-temperature deformation resistance and is corrosion resistant to evaporated metals such as Al, Ni and Cr. While it is also suitable for furnace heaters and electrodes, the EX is widely used in probe pins because of its high hardness and tensile strength, excellent wear resistance and heat resistance (brazing ability), smooth surface, and minimal wear.

DW is a material that has developed as a filament for thermionic emission. It is long-life tungsten material that facilitates thermionic generation by using a technology which introduces special additives evenly and prevents grain growth and intergranular fracture at thermionic emission temperatures. It is used for EDM wires, and hot -cathode mass spectrometers, vacuum gauges, X-ray tubes, discharge tubes, copiers, air cleaner corona wires, etc. Coil processing, end processing and assembly processing are also available upon request.

●**CY**(PFW)

CY is the most common pure tungsten material and has been widely adopted for use in heaters for furnaces and structural materials, taking advantage of such features as being highly machinable, excelling in corrosion resistance and containing little impure gas.

●EP、KT

EP and KT are materials that has been developed for electrodes used at ultrahigh temperatures. The resistance to loss of current, through electrical discharge, can substantially be increased by fine dispersion of grains. It is also suitable for structural materials at high temperatures, due to its excellent high-temperature characteristics. The fine crystals are resistant to shocks, and highly suitable for pressure welded electrodes.

●4N-W、5N-W

4N-W and 5N-W are made to have a high degree of purity. Especially, 5N-W reduces the impurities to an extremely low level, realizing tungsten of highest purity attainable in the world. This is best suited for products where even small amounts of impurities are undesired, for example in advanced technical use such as electrodes for discharge lamps and ultrahigh pressure mercury lamps.

Standard specifications of tungsten wires and rods

		Rods												wires								
Diameter range		Λ	/lateria	al				Representative spec				Material				Representative spec						
Diameter range	AW	CY	4N-W	EX	EP		Finish		Tolerance	Finish	Tolerance	AW	CY	4N-W		Fir	nish		Tolerance	Tolerance		
	AX	PFW	5N-W		KT	Black	Electrolytic	CC	diameter	grinding *1	diameter	AX	EX	5N-W	Black	CC	Electrolytic	Straight	diameter	MG		
~0.0129												0					0		±0.005mm	±4%		
0.013~0.029												0			0		0		±0.005mm	±3%		
0.03~0.19	0					0	0		±0.005mm			0	0	0	0		0	0	±0.005mm	±2%		
0.20~0.39	0		0	0		0	0		±0.005mm			0	0	0	0		0	0	±0.005mm	±2%		
0.40~0.49	0		0	0		0	0		±0.01mm			0	0	0	0		0	0	±0.01mm	±2%		
0.50~0.59	0		0	0		0	0		±0.02mm			0	0	0	0		0	0	±0.02mm			
0.60~0.79	0		0	0		0	0	0	±0,03mm			0	0	0	0	0	0	0	±0,03mm			
0.80~0.99	0	0	0	0		0		0	10.00111111	0		0	0	0	0	0	0		±0.0311111			
1.0~2.9		0	0	0		0		0	±0.05mm	0	±0.03mm		0	0	0	0			±0.05mm			
3.0~3.9		0	0	0		0		0	±0.15mm	0	10.0311111				0	0			±0.1mm			
4.0~4.9		0	0	0		0		0	±0.15mm	0												
5.0~6.3		0	0	0		0		0	±0.2mm	0	±0.05mm											
6.4~11.9		0	0	0		0		0	±0.3mm	0	±0.1mm											
12.0~14.9		0	0	0				0	±0,4mm	0	U,											
15.0~20.9		0	0		0			0	±0.5mm	0	±0.15mm											
21.0~40.0		0	0		0					0	±0,2mm											

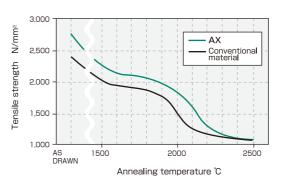
^{*1} Finish grinding: Centerless grinding for wires and rods of 20 mm or less in diameter and belt grinding for wires and rods larger than 20 mm in diameter.

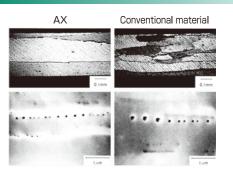
Manufacturing range of length of standard tungsten rods

Diameter	Length						
(mm)	MAX	Standard					
50	450	230					
45	600	300					
41	800	400					
36	1000	500					
31	1400	700					
25	1500	850					
21	1500	1100					
16	2000	1200					
11	3300	1000					
8	8000	1100					
6	12000	1000					
5	17000	1000					

Finish and thickness range of tungsten wires and rods

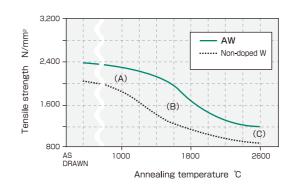
Code	Finish
D	DRAWN
DS	DRAWN AND STRAIGHTENED
CC	CHEMICAL CLEANED
EE	ELECTROLYTIC ETCHED
EES	ELECTROLYTIC ETCHED AND STRAIGHTENED
EP	ELECTROLYTIC POLISHED
EPS	ELECTROLYTIC POLISHED AND STRAIGHTENED
EPSC	ELECTROLYTIC POLISHED, STRAIGHTENED AND CUT
G	GROUND
S	SWAGED

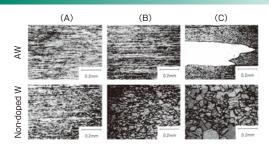

Standard tolerance of length of tungsten rods


(Unit:mm) Target : D16 max.								
From 50 incl. to 100 excl.	±1.0							
100~300	+3-0							
300~500	+4-0							
500~1000	+5-0							
1000~2000	+10-0							
2000~	±50							

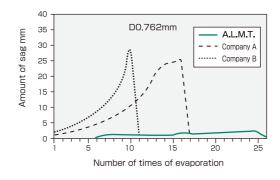
Purity of tungsten wires and rods

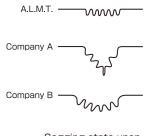
Type	W %
AW, AX, EX, CY, EP, KT	99.95min.
DW	99.20min.
4N-W	99.99min.
5N-W	99.999min.


Tensile strength of AX (D0.39mm)



Recrystallization structure and dope holes of AX and conventional material (D0,39mm)


Tensile strength of AW (D0.39mm)



Tensile strength of AW and non-doped W (D0.39mm)

Amount of sag of EX after AI evaporation test

Sagging state upon the 9th time of Al evaporation

Tensile strength of tungsten wires

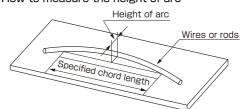
Thick	kness	D,C,E of VWW 1,2 (non-heat-treated)	D,C,E of VWW 1,2 (heat-treated)
Wires diameter(µm)	M G	Tensile strength N/mm²(gf/MG)	Tensile strength N/mm²(gf/MG)
Under 25	Under 1,9	3,000~4,500(80~120)	1,700~3,600(45~95)
From 25 incl. to 50 excl.	From 1.9incl. to 7.5excl.	2,400~4,000(65~105)	1,500~3,400(40~90)
From 50 incl. to 70 excl.	From 7.5incl. to 14.8excl.	2,300~3,800(60~100)	1,100~3,000(30~80)
From 70 incl. to 130 excl.	From 14.8incl. to 51.0excl.	2,100~3,600(50~ 95)	1,100~3,000(30~80)
From 130 incl. to 180 excl.	From 51.0incl. to 97.7excl.	1,900~3,400(50~ 90)	1,100~3,000(30~80)
From 180 incl. to 260 excl.	From 97.7incl. to 204.0excl.	1,900~3,400(50~ 90)	_

^{*}Separately consult with us about a 260 μ m (204.0MG) or thicker diameter.

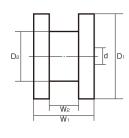
Straightness of tungsten wires and rods

- ①Straightness-required wires satisfy the following requirements. a) Natural hanging method: Wires under $100\,\mu\text{m}$ (MG30.16) in diameter shall be 450mm or more in natural hanging length for a length of 500mm.
- b) Circular chord method: Wires $100\,\mu\text{m}$ or more in diameter shall be 10mm or less in height of arc with respect to 100mm in chord length when cut to a length of 200mm.
- ②Straightness-required rods shall be 1mm or less in height of arc with respect to 100mm in chord length throughout the overall length of the rods.

Straightness test


Natural hanging method:

Wires shall be cut to the length specified by each standard, and its natural hanging length shall be measured.


Circular chord method:

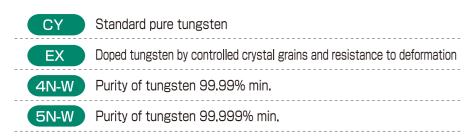
Wires or rods shall be cut to the length specified by each standard, and placed on a smooth plane, and the height of arc with respect to the specified chord length shall be measured as shown in the illustration below.

How to measure the height of arc

Standard spools for tungsten wire

Spool type	Drawing No.	Material	Flange dia. D1(mm)	Barrel dia. D2(mm)		Traverse width W2(mm)		Spool mass(g)	Max.coiling wire mass max(g)	Wire dia. range and applicable finish cord
Aluminum spool A	F-1565	Aluminum	106	75	32	26	10.1	104	1,400	0.1mm~0.5mm D,EE,EP
Aluminum spool B	F-1590	Aluminum	109	90	23	18	10	80	600	0.1mm~0.24mm D,EE,EP
Resin spool 106	F-1575	SAN resin added with E glass	106	75	34	26	10	105	900	0.02mm~0.24mm D,EE,EP
Resin spool D	F-1581	SAN resin added with E glass	106	90	34	26	10	107	600	0.04mm~0.25mm For gold-plated wires
Pooin angel C	L 1E60	CAN seein added with E class		40	00	0.4	10	00	٥٥٥	0.01mm~0.10mm D
Resin spool C	F-1306	SAN resin added with E glass	55	40	30	24	10	28	250	0.01mm~0.02mm EE,EP
Resin spool E	F-1579	Styrene	50	34	10	7	13	6.3	_	0,05mm \sim 0,1mm For 20m and 50m
Spool L	F-1569	Synthetic resin	277	221	60	44	215	310	2,800	0,2mm~1,0mm EE,EP
Bundle 10 inch		Inner dia. 254mm(10inch)								0.6mm~1.50mm CC
Bundle 12 inch		Inner dia. 305mm(12inch)								0.64mm~1.50mm D
Bundle 17 inch		Inner dia. 431mm(17inch)								1.5mm~1.90mm D,CC
Bundle 25 inch		Inne		4,800	1.91mm~2.0mm D,CC					

SMD-W(Electrode materials for discharge lamps)


Tungsten, which has the highest melting point among all metals, is used for electrodes for discharge lamps. SMD-W (tungsten) having a high density to meet high-powering and up sizing requirements of recent discharge lamps provides excellent characteristics for discharge lamps.

SMD-PFW	Standard grade	For all discharge lamps
SMD-EP	High-performance grade	Improved flushing-resistant performance with grains controlled
SMD-KT	Ultraperformance grade	Further advanced EP specifically intended for electrodes
SMD-4N	Lower impurities grade	Used for the types sensitive to impurities (W purity:99.99% min.)
SMD-5N	Ultralow impure content grade	Suitable for highest purity requirement (W purity:99.999% min.)

Electrode for ultra high pressure mercury and metal halide lamps

Tungsten electrode assembled with pin and coil. Melted type and point on the sdge are available.

Molybdenum wires and rods

■Product selection guide

	Application	Non-sag	Shock resistance/ Quakeproof	Machinability	Wear resistance
MOP	Structural materials, Heaters, Bolts, Nuts	\triangle	0	0	©
Mo Mos	Grids,Mandrels,Anchors	0	0	0	0
TEM	Supports, Heaters, Bolts, Nuts, Supporting shafts for X-ray tubes	©	0	0	0

■Product lines

MOP

MOP is the most common pure molybdenum material and is widely for heaters for furnaces, bolts, nuts, lighting, anchors for electron tubes, mandrels, supports, semiconductor support materials and magnetron parts, taking advantage of such features a high melting point, high strength at high temperatures, good heat conduction, small thermal expansion coefficient and excellent machinability.

MOS

Conventional molybdenum materials could cause pitch irregularities when grids are formed with high-speed coil winders. This problem can be solved by using materials with a large working range, and the coiling ability and working range of MOS have been improved by composition control at the raw material stage.

●TT-TEM

TEM is a high-quality molybdenum material that has overcome the weak points of brittleness and deformation at high temperatures of conventional molybdenum. It features excellent high-temperature deformation resistance, high recrystallization temperatures and interlocked recrystallization structures. Even after it has been used at high temperatures, it excels in shock resistance, and allows deformation processing at ordinary temperatures. It also features higher bending ability than pure molybdenum. TEM is used for heaters for high-temperature furnaces, supports for halogen lamps, high-temperature structural materials (pins, nuts, bolts, hooks for heaters), anode supporting shafts for X-ray tubes, etc.

Most suitable

Suitable

Standard specifications of molybdenum wires and rods

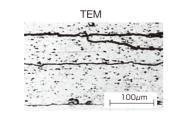
			ds					wii	es								
Diameter	Material			Representative spec						Material			Representative spec				
range	МОР	MOS	TEM	Black	Finish Electrolytic	Acid cleaning	Tolerance Diameter	Finish grinding *1	Tolerance Diameter	MOP MOS TEM		Finish Black Annealing Electrolytic			Tolerance Diameter	Tolerance MG	
0.02~0.19				0	0		±0.005mm			0	0		0	0	0	±0.005mm	±3%
0.20~0.39	0	0	0	0	0		±0.005mm			0	0	0	0	0	0	±0.005mm	±2%
0.40~0.49	0	0	0	0	0		±0.01mm			0	0	0	0	0	0	±0.01mm	±2%
0.50~0.59	0	0	0	0	0		±0.02mm			0	0	0	0	0	0	±0.02mm	
0.60~0.79	0	0	0	0	0		±0.03mm			0	0	0	0	0	0	±0.03mm	
0.80~0.99	0	0	0	0	0		±0.0311111	0		0	0	0	0	0	0	±0.0311111	
1.0~1.4	0	0	0	0	0			0	±0,02mm	0	0	0	0	0	0		
1.5~1.9	0	0	0	0		0	±0.05mm	0		0	0	0	0	0		±0.05mm	
2.0~2.9	0	0	0	0		0		0		0	0	0	0	0			
3.0~3.9	0	0	0	0		0	±0.15mm	0	±0.03mm	0	0	0	0			±0.1mm	
4.0~4.9	0	0	0	0		0	±0.15mm	0									
5.0~6.3	0		0	0		0	±0,2mm	0	±0.05mm								
6.4~11.9	0		0	0		0	±0,3mm	0	±0.0311111								
12.0~14.9	0		0			0	±0.4mm	0	±0.1mm								
15.0~20.9	0		0			0	±0.5mm	0	±0.15mm								
21.0~25.9	0		0			0	±0.7mm	0	±0,13111111								
26.0~35.9	0		0			0	±1.0mm	0	±0.0mm								
36.0~50.0	0					0	±1.0mm	0	±0,2mm								

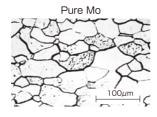
^{*1} Finish grinding: Centerless grinding for wires and rods of 25 mm or less in diameter and belt grinding for wires and rods larger than 25 mm in diameter.

Standard tolerance of length of molybdenum rods

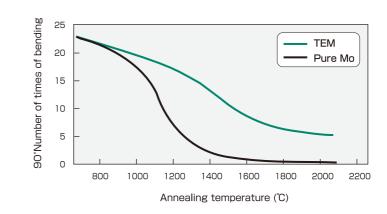
(Unit:mm) Target: D16 max.								
From 50 incl. to 100 excl.	±1.0							
100~300	+3-0							
300~500	+4-0							
500~1000	+5-0							
1000~2000	+10-0							
2000~	±50							

Purity of molybdenum wires and rods

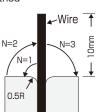

TYPE	Mo %
MOP, MOS	99.95min.
TEM	99.00min.


Finish and thickness range of molybdenum wires and rods

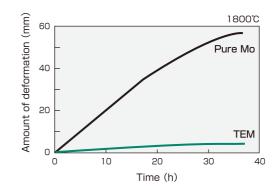
Code	Finish				
D	DRAWN				
DS	DS DRAWN AND STRAIGHTENED				
CC	CHEMICAL CLEANED				
CCA	CHEMICAL CLEANED AND ANNEALED				
ccs	CS CHEMICAL CLEANED AND STRAIGHTENED				
EE	ELECTROLYTIC ETCHED				
EES	ELECTROLYTIC ETCHED AND STRAIGHTENED				
EP	ELECTROLYTIC POLISHED				
EPS	ELECTROLYTIC POLISHED AND STRAIGHTENED				
EPSC	ELECTROLYTIC POLISHED, STRAIGHTENED AND CUT				
G	GROUND				
S	SWAGED				
В	BELT GROUND				

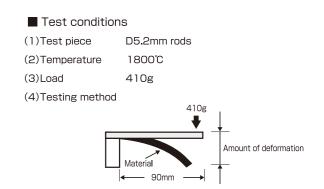

Recrystallization temperatures and structure of pure molybdenum wires and rods

Type	Recrystallization temperature °C	Recrystallization structure
Pure molybdenum	1000~1200	Equiaxed grain
TEM	1200~1900	Long,large grain
TZM(other company's)	1300~1400	Equiaxed grain

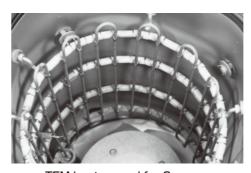


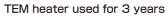
Bending ability of TEM rods



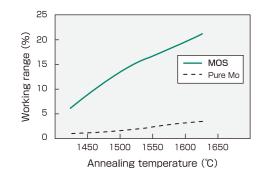

Test conditions

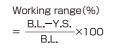
- (1)Test piece D 0.6mm
- (2)Heat treatment time 10 min.each
- (3)Testing method

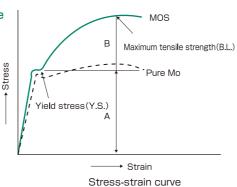



Excellent high-temperature deformation resistance of TEM rods, and examples of heater use

Examples of use in vacuum (1x10-3Pa) at 1500°C






Pure Mo heater used for 1.5 years

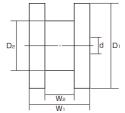
Working range of MOS (D0.1mm)

■Definition of working range

Tensile strength, elongation, and working range of molybdenum wires

Thick	rness	D,C,E of VMW 1,2,3(Non-heat-treated)		H of VMW 1,2,3 (Heat-treated)			
Wire diameter (µm)	MG	Tensile strength N/mm² {gf/MG}	Elongation %	Tensile strength N/mm² {gf/MG}	Elongation %	Working range (%)	
35 excl.	2.0 excl.	1,300{65}min.	5max.	800{40}min.	8min.	_	
From 35 incl. to 40 excl.	From 2.0 incl. to 2.6 excl.	1,200{60}min.	5max.	800{40}min.	10min.	_	
From 40 incl. to 60 excl.	From 2.6 incl. to 5.8 excl.	1,200{60}min.	5max.	740{37}min.	10min.	8min.	
From 60 incl. to 100 excl.	From 5.8 incl. to 16.0 excl.	1,100{55}min.	5max.	740{37}min.	12min.	10min.	
From 100 incl. to 150 excl.	From 16.0 incl. to 36.0 excl.	1,000{50}min.	5max.	700{35}min.	14min.	12min.	
From 150 incl. to 300 excl.	From 36.0 incl. to 144.0 excl.	1,000{50}min.	5max.	700{35}min.	14min.	_	
80 excl.	10.2 excl.	1,100{55}min.	5max.	800{40}min.	_	_	
From 80 incl. to 300 excl.	From 10.2 incl. to 144.0 excl.	1,000{50}min.	5max.	700{35}min.	_	_	

*Separately consult with us about a 300 μ m (144.0MG) or thicker diameter.


Straightness of molybdenum wires and rods

The wires to be heat treated shall be tested for a wire length of 500mm by the suspension method, and for a chord length of 100mm when the wire is cut to 200mm by the circular chord method, and shall satisfy the following requirements.

Thick	ness	Straightness(mm)		
Diameter(µm)	M G	Natural hanging method	Circular chord method	
100 excl.	16.0 excl.	400min.	_	
From 100 incl. to 150 excl.	From 16.0 incl. to 36.0 excl.	_	10max.	
From 150 incl. to 300 excl.	From 36.0 incl. to 144 excl.	_	15max.	

**Straightness-required rods shall be 1mm or less in height of arc with respect to 100mm in chord length throughout the overall length of the rods.

Standard spools for molybdenum wire

Spool type	Drawing No.	Material	Flange dia. D1 (mm)	Barrel dia. D2(mm)	Width W1(mm)	Traverse width W2(mm)	Hole dia. d(mm)	Spool mass (g)	Max.coiling wire mass max(g)	Wire dia. range and applicable finish cord
Aluminum spool A	F-1565	Aluminum	106	75	32	26	10.1	104	690	O.1mm~O.6mm D,EP,EE ** Maximum winded weight per spool : 500g
Aluminum spool B	F-1590	Aluminum	109	90	23	18	10	80	290	0.1mm~0.2mm D,EP,EE
Spool L	F-1569	Synthetic resin	277	221	60	44	215	310	2,800(MOS) 3,800(MOP)	0.25mm~1.5mm EP,EE
Bundle 48inch		Inner	dia. Appr	ox. 1,25	50mm				2,800(MOS) 3,800(MOP)	2.9mm~4.0mm D
Bundle		Inner	dia. Appr	ox. 260)mm				2,800(MOS) 3,800(MOP)	0.9mm~1.5mm D
Bundle		Inner dia. Approx. 230mm							2,800(MOS) 3,800(MOP)	1.5mm~2.8mm D
Bundle		Inner dia. Approx. 230mm								1.5mm~4.0mm C,C
	Aluminum spool A Aluminum spool B Spool L Bundle 48inch Bundle Bundle	Aluminum spool A F-1565 Aluminum spool B F-1590 Spool L F-1569 Bundle 48inch Bundle Bundle	Aluminum spool A F-1565 Aluminum Aluminum spool B F-1590 Aluminum Spool L F-1569 Synthetic resin Bundle 48inch Inner Bundle Inner	Aluminum spool A F-1565 Aluminum 106 Aluminum spool B F-1590 Aluminum 109 Spool L F-1569 Synthetic resin 277 Bundle 48inch Inner dia. Appro	No. Material D1(mm) D2(mm)	No. Material D1(mm) D2(mm) W1(mm)	Spool type Drawing No. Material D1 (mm) Ballet dia. D2 (mm) Wild (mm) width W2 (mm) Aluminum spool A F-1565 Aluminum 106 75 32 26 Aluminum spool B F-1590 Aluminum 109 90 23 18 Spool L F-1569 Synthetic resin 277 221 60 44 Bundle 48inch Inner dia. Approx. 1,250mm Bundle Inner dia. Approx. 260mm Bundle Inner dia. Approx. 230mm	Spool type Drawing No. Material Fallige dia. D2(mm) D2(mm) W1(mm) Width W2(mm) d(mm) D2(mm) W1(mm) W2(mm) M2(mm) M2	Spool type Drawing No. Material Fallige flat. D1(mm) D2(mm) W1(mm) Width W2(mm) M2(mm) M2(mm)	Spool type Drawing No. Material Flange da. D1(mm) D2(mm) W1(mm) W2(mm) W2(mm) M2(mm) M2

* Maximum winded weight of DM & TEM per spool: 1,800g

Tungsten sheets / plates

0	Most suitable
0	Suitable
	Unquitable

Product selection guide

		Application	Туре	Cutting ability	Bending ability	Shock resistance	Sputtering ability	Density
	2N W	Base plates for sintering, boats, Heaters, Reflectors, Heatspreader, Weights, Spacers, Various kinds of jigs and tools	Rolled products	0	0	0	©	0
	3N-W		Sintered products	Δ	\triangle	\triangle	\triangle	\triangle
W	4NI W	Sputtering targets, Molds for hot pressing	Rolled products	0	0	0	0	0
Ÿ	4N-W		Sintered products	Δ	\triangle	\triangle	\triangle	\triangle
	ENW	Sputtering targets	Rolled products	0	0	0	0	0
	5N-W		Sintered products	\triangle	\triangle	\triangle	\triangle	\triangle

■Product lines

Rolled products

The most common tungsten sheets / plates are made by rolling, which can be bent or pressed while heating if the thickness is 3mm or less. To facilitate cutting and polishing, we provide fully annealed tungsten sheets / plates.

Sintered products

Sintered products are used for parts requiring moderate mechanical strength, such as discrete semiconductors, weights and spacers. This is intended to reduce costs by sintering after powder molding in plate form through control of powder particle size and establishment of press forming technology.

**Rolled products and sintered products are available in 3N, 4N and 5N grades of purity.

●3N-W(General material)

3N-W is the most common tungsten sheets /plates manufactured by using tungsten powder with a purity of 3N5 (99.95%) or more by powder metallurgy. This is used for heat-resistant structural materials, electrode materials, and so on, taking advantage of such features as excellent in high-temperature deformation resistance and corrosion resistance, and containing less impure gas. It is also used for semiconductor parts since the coefficient of thermal expansion is the lowest among metals

●4N-W (High-purity material)

4N-W is tungsten sheets /plates manufactured by using tungsten powder with a purity of 4N (99.99%) or more by powder metallurgy. It is generally used for sputtering target materials, jigs and tools.

● **5N-W**(Ultrahigh-purity material)

5N-W is tungsten sheets /plates manufactured by using highpurity tungsten powder with a purity of 5N (99.999%) or more by powder metallurgy. This is used for sputtering target materials, and various jigs and tools for manufacturing high-purity tungsten powder.

Standard dimensions of tungsten sheets / plates

(Unit: mm)

(e.i.d. iiii)									
Thickness General	Fi	nished surface	9	Dimen	sions				
tolerance ±10%	Chemical cleaned	Ground/polished	Honed	Max.width	Max.length				
1.0 ~ 1.9	0	0	0	300	500				
2.0 ~ 4.9	0	0	0	300	500				
5.0 ~10.0	0	0	0	300	300				

^{*} Please contact us for sheets/plates thicker than 10mm.

Tolerance of width and length of tungsten sheets/plates

(Unit: mm)

Tolerance	Thickness from 1 to 1.5mm excl.	Thickness from 1.5 to 10mm excl.
Width/length	±2.0	±3.0

^{*}Separately consult with us about tolerances according to processing methods.

Types of tungsten sheets / plates

Material	Purity
3N-W(General material)	99.95 %min.
4N-W(High-purity material)	99.99 %min.
5N-W(Ultrahigh-purity material)	99.999%min.

Type	Density(g/cm³)	Relative density(%)
Rolled products	18.6~19.3	96.3~100.0
Sintered products	17.0~17.9	88.1~92.7

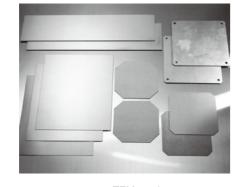
Molybdenum sheets / plates /

Most suitable Suitable Unsuitable

■Product selection guide

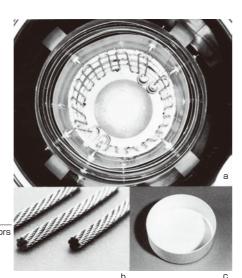
		Application	Туре	High-temperature deformation resistance	Shock resistance	Bending ability	Drawing ability	Cutting ability
	МОР	Heatspreader, Boats for evaporation, Electron tubes, Furnace pars, Crucibles	Standard products	\triangle	0	0	0	0
		Deep drawing materials, Boats for evaporation	Cross-rolled products	Δ	0	0	0	0
Mo	TEM	TEM Reflectors		0	0	0	0	0
	DMB		Honed surface,	0	\triangle	\triangle	\triangle	0
	ТЕМ-В		Coated surface	0	0	0	0	\triangle
	TEM		Acid-cleaned and mirror finish	0	0	0	\triangle	0

■Product lines


MOP

MOP is the most common pure molybdenum sheets/plates. This is widely used for heatspreader, reflectors, and boats for evaporation, taking advantage of features a high melting point, high strength at high temperatures, high thermal conductivity, low coefficient of thermal expansion and excellent machinability.

DMB is a molybdenum sheets/plates that is most suitable for setters for sintering ceramics and rare-earth magnets. This features excellent creep (deformation) resistance at high temperatures, a low coefficient of thermal expansion and excellent characteristics in vacuum or reduction atmosphere. Use of DMB sheets /plates in place of conventional bulky and heavy ceramic sheets/ plates ensures thickness reduction to approximately 1/5 or less, and remarkably improves the furnace operating efficiency and the lifetime of setters for sintering.


●TT-TEM

TEM is molybdenum sheets/plates by adding small amounts of special elements and combining plastic working. In particular, the TEM-B sheets/plates has a laminated structure of long, large grains, and excels at high-temperature deformation resistance, and shock resistance at room temperature and also allows plastic working at room temperature. It also features higher high-temperature strength than pure molybdenum. This is used for reflectors for high-temperature furnaces, parts for furnaces, setters, boats, etc.

TEM products
(examples of application)
a.Heating elements and reflector

b.Stranded wires c.Crucibles

Standard specifications of molybdenum sheets/plates

(Unit:mm)

	Mot	erial					Material						
Thickness General	IVIat	ена	Finished surface		Dimer	nsions	IVIat	enai	Fin	Finished surface Mirror Chemically Cleaned blasted			nsions
tolerance ±10%	MOP	TEM	Mirror	Chemically cleaned	Max. width	Max. length	DMB	TEM-B	Mirror			Max. width	Max. Iength
0.015~0.099	0		0		110 500								
0.10~0.15	0		0		300	1000							
0.16~0.19	0		0	0	300	1500							
0.20~0.49	0	0	0	0									
0.50~1.4	0	0	0	0	600	2000		0	0	0	0	300	600
1.5~2.9	0	0	0	0			0	0	0	0	0	500	600
3.0~6.9	0	0		0			0	0		0	0	600	600
7.0~14.9	0	0		0	600	1000	0			0	0	600	600
15.0~25.0	0	0		0									

^{*} The tolerances in the above table may vary depending on finishing. Please contact us if you require different specifications.

Standard specifications of cross-rolled molybdenum sheets/plates

(Unit: mn

				(=1)						
Thickness Constal	Material									
Thickness General tolerance ±10%	MOP	Finished surface	Dimensions							
tolerance ± 10 /0	IVIOF	Mirror	Max. width	Max. length						
0.10~1.00	0	0	300	1000						

^{*} The thickness tolerance may vary depending on the finish.

Tungsten and molybdenum crucibles

High-performance crucibles developed in pursuit of upsizing and a long life by various manufacturing methods. In particular, molybdenum crucibles have been well-received as long-life crucibles due to such features as high density and uniform microstructure. These are widely used for growing single-crystal sapphire, where productivity has remarkably improved.

(Unit : mm

			(01111.11111)					
	Material	Size						
	iviaterial	Outside diameter × height	Thickness					
	Molybdenum	olybdenum (max)D400×H400						
Sintered products	Tungsten-molybdenum alloy	(max)D300×H300	_					
	Tungsten	(max)D200×H200	_					
Spinning product	Molybdenum	(max)D600×H600	(max) 15.0, (min) 1.0					

^{**}Consult with us about sizes exceeding the above and for special processing.

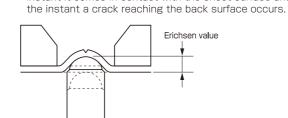
Spun molybdenum crucible

Ceramic-coated molybdenum sheets/plates

The furnace operating efficiency is remarkably improved by using ceramic-coated molybdenum sheets /plates having anti-adhesion and anti-reacting functions with thickness further reduced to approx. 1/5 or less to replace conventional bulky ceramic sheets/plates with poor thermal efficiency.

Application	Coating type	Example of composition	Example of operating temperature (in hydrogen atmosphere or in vacuum)	Coating thickness		
Sintering MIM	Alumina	Al2O3 99.0%	1400℃			
products	Alumina-Titania	Al2O3 -2.5%TiO2	1400℃			
products	Alumina-Zirconia	Al2O3 -25%ZrO2	1700℃	30∼150µm		
(SUS,Fe-Ni Ti,	Zirconia-Yttria	ZrO2-8%Y2O3	1400℃			
\ Alloys parts /	Zirconia-Silica	ZrO2-33%SiO2	1400℃			

Molybdenum mesh


Width × length (mm)	Wire diameter (mm)	Mesh(approx.)	Porosity(approx.)%
1000×1000	0.35	24	44

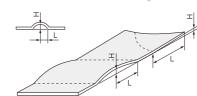
^{*}Consult with us for specifications other than the above.

Erichsen value of MOP thin sheet

	(Unit : mm)
Thickness	Standard
From 0.10 incl. to 0.15 excl.	3.0min.
From 0.15 incl. to 0.20 excl.	3.7min.
From 0.20 incl. to 0.25 excl.	4.0min.
From 0.25 incl. to 0.30 excl.	4.4min.
From 0.30 incl. to 0.40 excl.	4.9min.
From 0.40 incl. to 0.50 excl.	5.3min.
From 0.50 incl. to 0.60 excl.	5.6min.
From 0.60 incl. to 0.70 excl.	5.7min.

Erichsen value measuring method (JIS Z2247A) Amount of travel of the ball head punch between the instant it comes in contact with the sheet surface and

Flatness of MOP and TEM sheets/plates

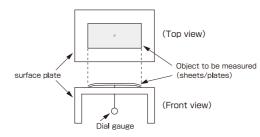

The flatness measuring method is based on TMIAS0301.4.4 (Mo flatness measuring method) as shown in the table below.

Flatness(%)=
$$\frac{H}{I}$$
×100

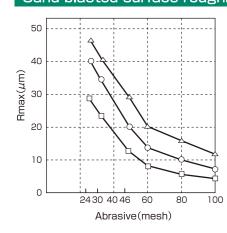
Thickness (mm)	Range
0.5min.	3.5%max.
less than 0.5	4.5%max.

Flatness measuring method

- H:The maximum spacing between the bottom surface and flat surface of a sheet.
- L:The minimum distance between the tangent of the flat surface and maximum height of sheets/plates.

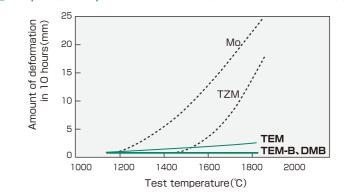


Flatness measuring method and tolerance of DMB and TEM-B sheets/plates


(Unit : mm)

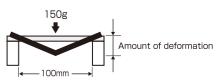
Length of sheets/plates	Tolerance of flatness
100max.	0.25max.
200max.	0.30max.
300max.	0.50max.

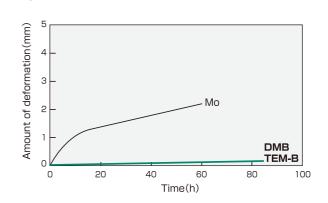
Flatness measuring method


Sand blasted surface roughness of DMB and TEM-B sheets / plates

High-temperature deformation resistance of various kinds of molybdenum sheets/plates

①Temperature dependence of the amount of deformation at each temperature under a fixed load

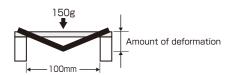



(1)Test piece T1×B20×L120mm

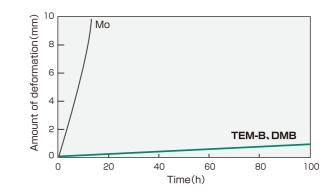
(2)Time 10 hours(3)Load 150g

(4)Testing method

②Time dependence of the amount of deformation at 1200℃ under a fixed load



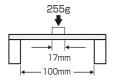
Test conditions


(1)Test piece T1×B20×L120mm

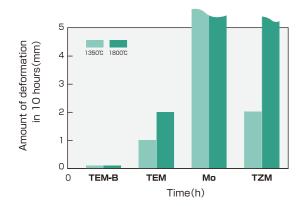
(2)Temperature 1200℃ (3)Load 150g

(4)Testing method

③Time dependence of the amount of deformation at 1800℃ under a fixed load

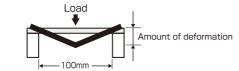


■ Test conditions

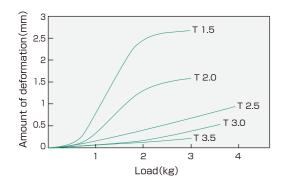

(1)Test piece T 1.5×B20×L120mm

(2)Temperature 1800℃(3)Load 255g

(4) Testing method



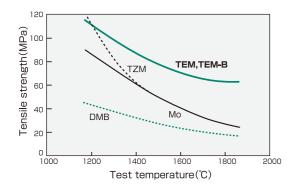
High-temperature deformation resistance of TEM-B sheets/plates



Test conditions

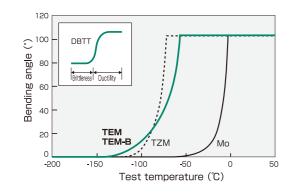
- (1)Test piece T1.5×B20×L120mm (2)Temperature 1350℃, 1800℃
- (3)Time 10 hours (4)Load 300g(1350°C) 340g(1800°C)
- (5)Testing method

High-temperature deformation resistance of DMB and TEM-B sheets/plates

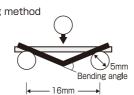


Test conditions

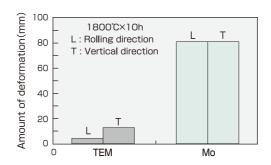
- T×□150mm (1)Test piece 1200℃ (2)Temperature
- (3)Time 0.5 hours
- Uniform load(~4kg) (4)Load
- (5)Testing method


High-temperature strength of various kinds of molybdenum sheets/plates after use at high temperature (1800°C)

■ Test conditions

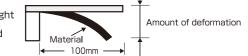

- (1) Test piece T1mm (Rolling is in the direction of length.)
- (2)Strain rate 8.3×10⁻⁵ s⁻¹

Ductile-to-Brittle Transition Temperature (DBTT) of various kinds of molybdenum sheets/plates after use at high temperature (1800°C) (Toughness and processing ease at low temperature)



Test conditions

- (1)Test piece T1×B3×L25mm
 - (Rolling is in the direction of length.)
- (2)Speed
- (3)Testing method

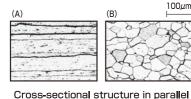


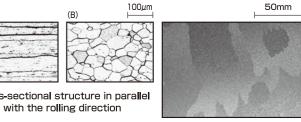
Excellent high-temperature deformation resistance of TEM sheets/plates, and examples of reflector use

Test conditions

- (1) Material TO.5mm (W10×L120)
- (2) Temperature 1800℃
- (3) Time 10hours
- (4) Load Own weight
- (5) Loading method

Examples of 100h use in vacuum (1 x 10-3Pa) at 1500°C

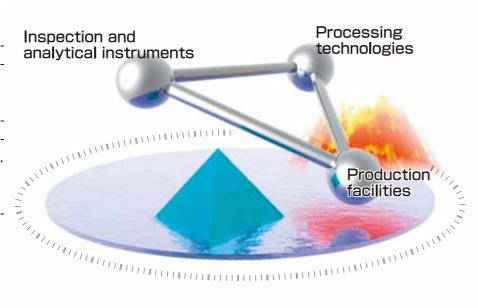



TEM reflector

W-Mo reflector

Recrystallization temperature and structure of various kinds of molybdenum sheets/plates

Material	Recrystallization temperature	Recrystallization structure
MOP(pure Mo)	1000~1100℃	Equiaxed grain(B)
DMB	_	Huge grain
TEM	1200~1800℃	Long, large grain(A)
TEM-B	_	Long, large grain(A)
TZM	1300~1400℃	Equiaxed grain



Appearance of DMB

Hyper Materials | 28 27 | Hyper Materials

An abundance of processing technologies compatible of handling any request

Our company is a top manufacturer having processing technologies of tungsten and molybdenum metal products. We can handle every processing request with our special materials and full lineup of products. We can provide information on use and also cooperation in design and processing not only for special processing that meets each customer's needs, but also based on the considerable experience we have accumulated in tungsten and molybdenum processing. Additionally, we supply high quality with substantial evaluation and analytical instruments, and know-how.

Ultrasonic flaw detectors

plasma emission spectrophotometers

We deliver peace of mind with reliable quality controls.

X-ray diffraction instruments

Frameless atomic absorption-photometers

Field-emission type scanning electron microscopes

Electron-beam micro-analyzers

Rolling and cladding

— Rolling (Cold, Warm, Hot)

Cutting-off

Shearing

- Wheel cutting

- Pressing

Countering (Contour machining)Electric discharge machining

Punching and bending

Pressing

Punching

- Roller bending - Drawing

Cutting and grinding

- Lathe

Milling machine

Drilling machine

Machining center

- Electric discharge machining

Surface grinding

Rotary grinding

Centerless grinding

Surface machining

- Lapping

Polishing

- Barreling

Surface cleaning

- Blasting

- Plating

- Bonding

— Photo-etching

 Heat treatment (Destraining, Degassing, Cleaning)

(Destraining, Degassing, Cleanin

Line processing

Wiredrawing

- Electrolytic polishing

- Rewinding

- Straight-lining

Meshing

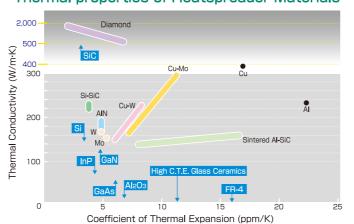
- Cutting-off

- Deburring

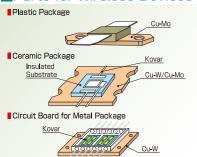
Coiling

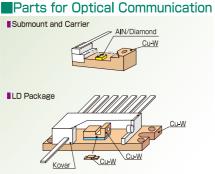
– Bending – Plating

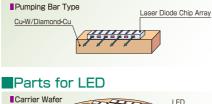
Heat treatment


Comparison of physical and mechanical properties of Heatspreader Materials

				Coefficient of	Thermal C	onductivity	Specific	Specific		Transverse	Tensile	Young's	D : ,	Electric Resistivity	Dielectric		Α	Application	on			
	0 1 1 1 1 1 1		T 1 N		Thermal Expansion				Gravity			Strength	Modulus	Poisson s Ratio	Resistivity	Constant		LSI	Wireless	Opto	LD·LED	Characteristics
	Category	Material	Trade Name	Composition	[ppm/K]		100℃	L (0 /2	-	[HV]	[MPa]	[MPa]	[GPa]		[77III]	[at 1MHz]	industrial machinery		communication	Electronics	LD LLD	
	Metals		W		4.5	167	159	0.13	19.3	370	_	_	380		5.5×10 ⁸	_						Low coefficient of thermal expansion
	Motalo		Mo		5.1	159	138	0.25	10.2	240	_	_	320		5.7×10 ⁻⁸	_	_		Ť		_	Machine processing is available
			W-6	94W-6Cu	6.0	150		0.15	17.6	330	1,000	590	350		_							
			W-10	89W-11Cu	6.5	180	176	0.16	17	300	1,100	560	330		5.3×10°	_						
		Cu-W	W-15	85W-15Cu	7.2	190	183	0.17	16.4	280	1,200	530	310	0.3	4.6×10 ⁻⁸		-	•	•	•	•	C.T.E. is variable Good machinability
			W-20	80W-20Cu	8.3	200	197	0.18	15.65	260	1,300	490	280		4.0×10 ⁻⁸	_	-			_	_	Good Machinability
		-	W-10N W-10T	89W-11Cu	6.5 6.5	200 205		0.16	17 17	300	1,100	560 560	330		5.3×10°		-					
	Motel		CM-15	89W-11Cu	7.0	160	156	0.16	10.01	150	1,100	540	280		5.3×10 ⁻⁸							Cood machinobility
	Metal Composites,	-	PCM30	85Mo-15Cu 70Mo-30Cu		200	196	0.29	9.8	180	-	600	230	0.315	4.0×10 ⁸		-					Good machinability
	Alloy	-	PCM35	65Mo-35Cu		210	205	0.3	9.7	175	_	560	220	0.515	3.5×10°	_	-					Suitable for rolling and
eatspreader	Alluy		PCM40	60Mo-40Cu		222	217	0.31	9.6	170		530	210	0.32	3.4×10°	_						pressing process
ğ		Cu-Mo	RCM60		x10.0-y13.2(11.1)	286	280	0.33	9.4	160	_	440	170		2.7×10 ⁸	_						process process
1 8			CPC141(30)		x7.3-y10.0(8.5)	220	211	0.32	9.5	_		380	160	-	_	_						Suitable for rolling and
l g			CPC232(30)	Cu/PCM/Cu		255	250	0.34	9.3	_	_	350	130		_	_	1					pressing process
at I			CPC111(30)	Cu/PCM/Cu	9.5	260	_	0.35	9.2	_	_	310	125	_	_	_	1					Good heat dissipation by
单			CPC212(30)	Cu/PCM/Cu	11.5	300	_	0.36	9.1	_	_	230	120	_	_	_	1					Cu surface layer
	0:	A 18.1	SALN-20 W			>200	>180								11	0.5		_				111.1.70
	Ceramics	AIN	SALN-17 W		4.5	>170	>150	0.67	3.26	1,200	300	-	270	_	1011	8.5		•		•	•	High T.C. and Insulator
			β8	70SiC-30AI	8	140	_	0.73	2.60	_	240	_	130	0.26	-	_						1 (0 the edge of edge of
		Al-SiC	β10	60SiC-40AI	10	145	_	0.75	2.70	_	240	_	130	_	_	_						1/3 the density of copper
	Ceramics		β12	50SiC-50AI	12	150	_	0.77	2.70	_	280	_	120	_	_	_						C.T.E. is variable
			β14	45SiC-55AI	14	160	_	0.78	2.60	-	280	_	100	_	_	_						Available for an
	-Metal		<i>β</i> 16	25SiC-75AI	16.5	160	_	0.83	2.80	_	250	260	100	0.29	_	_						aluminum skin
		Si-SiC	Invader SSC200	18Si-SiC	3	>200	_	0.67	3	-	350	-	400	-	4.7	_	•	•				Same low C.T.E. as Si and high T.C.
		DMCH	DC60	Diamond-Cu	6.0	550	_	0.45	5.0	_	_	_	410	0.15	2.6×10 ⁻⁴	_		_				LE-b TO
	Diamond	Diamond-Cu	DC70	Diamonu-Cu	6.5	500	_	0.44	5.5	_	_	_	-	-	_	_						High T.C.
	Diamond		Sumicrystal		2.3	2,000	1,400	0.51		9,000~10,000		_	1,050	_	1014	5.7						High T.C. and Insulator
			CVD-Diamond		2.3	>1,000	_	0.51		9,000~10,000		_	1,050		5×10 ⁷	5.8						Trigit 1.0. drid iriodiator
			Si		3	151	_	0.75	2.3		200	_	170		2.3×10 ⁻³	11.7						
			GaAs		5.9	46	34	0.33	5.32	-		290	90		3.8×10 ⁻⁶	11.1						
اس	Semicon	nductor	InP		4.5	70	_	0.32	4.79	-	_	_	60		8.2×10 ⁻⁷	12						
# I		_	GaN		a5.6-c3.2	130	_	0.49	6.15	-	_	_					-					
data			SiC		3.1	490		0.69	3.2	-	_	_	221		- 1012	10	-					
		-	Al ₂ O ₃		6.7	17	17	0.8	3.6	1,900	300	_	370		1012	8.9	-					
Reference	Ceran	nics	BeO		7.6	251	180	0.96	2.9	1,200	200		330		1013	6.7	-					
ē			SiO ₂ High C.T.E. Glass	Coromico	3	1.4 0.2			0.7			_			_		-					
اق				s ceramics	11.5	393	393		8.93	80					1.7×10 ⁸		-					
e l	Meta	ale	Cu Al		17 23	238	393	0.38	2.7	80		250	120 80		1./X10°	 	-					
Ш	ivieta	213	Kovar		5.3	17	17	0.27	8.36	160		540	140		4.9×10 ⁷		-					
		FR-4		x15-y17	0.2		0.44	- 0.30	-		- 540	-		4.5^10		-						
	Organic		Polvimio	10	25	0.2		_	_	_	_	_	_				1					


Thermal properties of Heatspreader Materials





Parts for Wireless Devices

Parts for LD Pumping Bar Type

Parts for LED Carrier Wafer Mo/Cu-W/Cu-Mo

1. Metals Category Pure Mo, Pure W

These have low thermal expansion close to Si chips, and superior mechanical properties. These are most suitable for high-power / high-reliability heatspreader. Various machining processes including pressing can be done on these materials.

■Application: For diode and thyristor,
Power transistor substrate,
LED substrate, etc,

2. Metal Composites, Alloy Category Cu-W

Cu-W is a combination of W which has low thermal expansion and Cu which has high thermal conductivity. Thermal expansion can be adjusted to those of Alumina and Kovar materials. Also, with good machinability, it's possible to manufacture the parts with small-complicated shapes.

Application: Wireless communication,
Opto electronics,
LED substrate, MPU, etc.

Cu-Mo

Cu-Mo is suitable for rolling and pressing processes. Thermal expansion and thermal conductivity are adjustable with this material. Since the "Clad" material's surface is pure Cu, the heat dissipation on surface layer is larger.

Application: Wireless communication, Plastic package,

Plastic package, Power transistor substrate, LED substrate, etc.

3. Ceramics Category

AIN

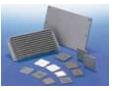
AIN has a high electric insulation and low dielectric constant. Various metallizing processing is possible with this material.

Application: Semiconductor laser submount, LED substrate, et

4. Ceramics-Metal Category

Sintered Al-SiC

Al-SiC is a heatspreader easily applied for low volume demand and relatively complex shaped parts production. Specific gravity is 1/3 of Cu. By adjusting the composite ratio Al and SiC, it is possible to customize the thermal expansion to required specification. Moreover, as an option it is possible to laminate an aluminum layer on the surface.



Application: MPU, DSP, System LSI, Router LSI, etc.

Invader (Si-SiC)

Si-SiC is a heatspreader which has similar low thermal expansion to Si chips and also has high thermal conductivity. Available for a near net shape.

Application: LSI for super computer,
MPU for high performance
server. etc.

5. Diamonds Category

Sumicrystal

Our original ultrahigh pressure technology enables the production of synthetic single crystal diamonds which possess one of the best thermal conductivities of all known materials.

Application: Semiconductor laser submount, etc.

CVD-Diamond

Because of its binderless polycrystalline structure, our CVD diamond exhibits a high thermal conductivity approaching that of single crystal diamond. Large diamonds can be made and can be applied in wide number of applications.

Application: Semiconductor laser submount, power transistor substrate, etc.

DMCH Diamond-Cu

Composite material of diamond and copper with thermal expansions similar to InP or GaAs and thermal conductivity higher than copper.

Application: Semiconductor laser submount, power transistor substrate, etc.

31 Hyper Materials Hyper Materials 32

• Machining / processing characteristics of heavy metal

A new line of products have been developed that allow processing options beyond cutting such as forging and rolling. They can be manufactured into more complex shapes and configurations while keeping costs low. Have comparable specific gravities to lead, but environmentally friendly.

Before forging

After forging

• Features of high density of heavy metal

These heavy metals are comprised primarily of tungsten, and utilizing it's high density characteristics we have developed technology to allow us to use injection molding to create 3D shapes with high accuracy and low cost.

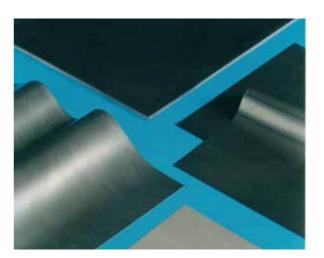
- Balancer for aircraft
- Weight for golf club Roater for watch
- Balancer for meter in the automobile
- Vibrator for mobile phone
- Balancer for automobile

Absorption properties

Heavy metals are far superior compared to other metals in terms of absorption of high-energy beams and radiation, they have extremely low gas emissions within a vacuum and are superior in mechanical strength and processing workability.

Medical leaf-collimator
Shield capsule for isotope Shield products for high energy

Shielding effect of heavy metal


or moram	18 011001 01 11	out y motur				
Isotope	γ Ray energy (MeV)	Absorption coefficient(cm1)	1/2 Damping thickness (cm)	1/10 Damping thickness (cm)		
⁶⁰ Co	1.17 1.33 } Ave.1.25	0.93	0.75	2.05		
131	0.364	3.69	0.188	0.64		
	0.638	1.74	0.40	1.32		
Ra	2.20	0.72	0.97	3.20		
²⁴ Na	1.38	0.97	0.72	2.36		
- iva	2.76	0.66	1.05	3.50		
¹⁸⁷ W	0.68	1.43	0.49	1.60		

Typical properties of heavy metal

★Plastic heavy metal ☆Corrosion resistant heavy metal (ST series)

											. (
Properties		Material	★ HM-12	HM-1	HM-2	HM-5	HM-7	HM-7S	☆HM-7ST	☆HM-8ST	HM-185
Tun	gsten composition	%	53	90	90	95	95	95	95	97	97
	Density		12	17	17	18	18	18	18	18.5	18.5
	Hardness	HRC	24	26	26	28	28	28	28	29	29
	Compression strength (Warpage 0.2%)	MPa	_	690	690	780	560	560	690	690	780
	Tensile strength	MPa	880	590	600	880	780	780	780	780	880
Mechanical	Yield strength (Warpage 0.2%)	MPa	650	510	510	650	560	560	650	650	650
properties	Elongation	%	40	0.4	0.4	25	5	5	5	5	10
	Young's modulus	GPa	_	280	_	350	300	300	350	300	370
	Transverse rupture strength	GPa	_	1.4	_	2.2	2.1	2.1	_	_	2.2
	Impact strength	J/cm²	40	2.0	_	4.9	2.9	2.9	_	_	2.9
Thermal	Thermal conductivity	W/(m·K)	_	88	_	84	92	92	75	_	100
properties	Coefficient of linear expansion	ppm/K	_	6.0	_	5.2	5.6	5.6	5.2	_	5.0
Electrical	Electrical conductivity	%I.A.C.S	_	15	_	_	16	_	_	_	_
properties	Specific resistant	ce Ωm	_	_	_	110	_	_	_	_	81
	Magnetism		exist	none	weak	exist	weak	none	none	none	exist
Magnetic properties	Magnetic permeability	Km	_	1.00022	_	4.723	_	1.00013	1.00028	_	4~4.5
properties	Magnetic susceptibility	Xm	_	0.00022	_	3.723	_	0.00013	0.00028	_	3~3.5

*The above values may vary depending on production conditions.

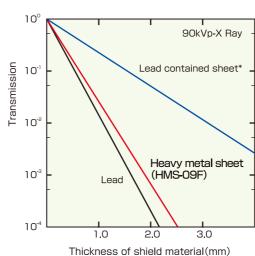
• Features of Heavy metal sheets

- ●Lead(Pb) free, Tungsten (W) is main composition
- Approximately two times X Ray radiation shielding compared to conventional Lead contained sheet
- •Keeping the almost same elasticity and flexibility as standard rubber
- •Various shape and size are available by easy cutting
- •High specific gravity ($\rho \ge 9$)

Application

- Radiation shielding parts with elasticity and flexibility requirements
- •Weight parts with elasticity and flexibility requirements
- Radiation shielding parts with various shape requirements
- Damper

Mechanical and thermal properties


Properties	Properties Specific			ties	Thermal properties			
Grade	gravity	Tensile strength (MPa)	Elongation (%)	Hardness (JIS A)	Specific heat (kJ/kg·K)	Thermal conductivity (W/m·K)	Coefficient of linear expansion(×10 ⁻⁵ /K)	
HMS-09C (General purpose)	9.0	5.0	650	82	0.24	0.7	6.8 (xy-direction) 13 (z-direction)	
HMS-09F (Heat and chemical resistance use)	9.0	7.0	300	94	0.26	0.6	11 (xy-direction) 19 (z-direction)	

Heat and chemical resistance

Properties Grade	Heat resistance	Chemical resistance
HMS-09C	Usable under 100℃	Resistant to alcohol, acid and alkali
HMS-09F	Usable under 200°C	Resistant to organic solvents, alcohol, acid and weak alkali

^{*}The above property values are intended as a guide. Actual values may differ from those published without notice.

X ray shielding performance

*Data from the sheet having a specific gravity of 4.2.

Resistance to radiation

(Upper section: HMS-09C, lower section: HMS-09F)

(R) Item Exposure dose	Appearance	Tensile strength (MPa)	Elongation (%)	Hardness (JIS A)
О	_	5.0	650	82
U		7.0	300	94
5.0×10⁵	No change	4.8	630	84
5.0×10	No change	7 . 2	290	94
7.5×10 ⁶	No change	3.4	200	90
7.5×10	No change	8.0	70	96
1.0×10 ⁷	No change	3.4	70	90
1.0/10	No change	8.5	50	96

* Irradiation by 60Co ray source

Hyper Materials | 34 33 | Hyper Materials

OELCON

ELCON-Is the general term of our electric contact materials developed by combination of various compounds in addition to silver/copper having good electrical conductance and tungsten-graphite having superior heat and arcing resistance.

ELCON: Electric Contact

Tungsten contacts, material series and applications

		Typical properties			Application							
Gra	ade	Composition	Specific gravity	Conductivity %IACS	Hardness HRB	Heavy load circuit breakers	Heavy load gas breakers	Dedicated arcing contacts	Tap changers	Electrodes for resistance welding	Electrodes for discharge machine	Electrodes for spot welding
Λ	A-1	35Ag-65W	15.0	48	91						0	0
A type (Ag-W)	A-7	35Ag-65W	14.9	55	82	0		0			0	0
(76-11)	A-9	45Ag-55W	14.0	60	62	0		0				
	C-2B	10Cu-90W	17.2	26	100		0					0
	CX-20	20Cu-80W	15.5	43	100					0		
	C-1	30Cu-70W	14.3	26	93						0	0
C type	C-6	30Cu-70W	14.3	55	87		0	0	0	0	0	
(Cu-W)	C-8	40Cu-60W	13.2	64	75		0		0			
	C-10	50Cu-50W	12.1	65	60				0			
	NEL120	30Cu-70W	14.3	52	85						0	
	NEL150	32.5Cu-67.5W	13.5	56	80						0	

			Typical properties				Application				
Grade		Composition	Specific gravity	Conductivity %IACS		dness g(HRB)	Circuit breakers	Vacuum breakers	Heavy load contacts for vehicles	Magnet switches	DC contactors
KA type	KA-7	35Ag-60WC-5Co	12.8	21	330	(108)		0	0		
(Ag-WC)	KA-12	60Ag-40WC	12.0	58	120	(67)	0				
	KX-125	72Ag-WC-Gr	9.6	35	65	(17)	0				
	KX-138	77Ag-WC-Gr-α	9.6	35	60	(10)	0				
KX·KAG type	KX-140	85Ag-WC-Gr-α	9.5	45	45	(<10)	0				
(Ag-WC-Gr)	KX-150	85Ag-WC-Gr-α	9.2	62	45	(<10)	0				
	KX-170	85Ag-WC-Gr-α	9.3	62	45	(<10)	0				
	KAG-2	57Ag-WC-Gr	9.7	30	70	(25)	0				
AN type(Ag-Ni)	AN-2	85Ag-15Ni	9.9	80	6	7	0			0	0
A O + (A = O=)	AG-2%	98Ag-2Gr	9.2	82	3	5	0				
AG type(Ag-Gr)	AG-5%	95Ag-5Gr	8.5	57	3	5	0				

• Features of NEL150

High speed processing…

The processing speed is 1.5 times faster than that of general copper-tungsten materials and it has superior arcing resistance.

Low consumption processing...

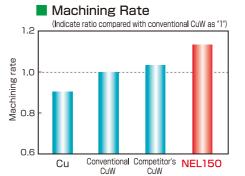
Electrode consumption is a half of consumption of general coppertungsten materials.

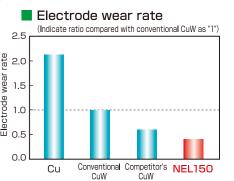
High grade processing...

The processed electrical discharge surface demonstrates very little surface roughness that can be easily polished to produce excellent smoothness.

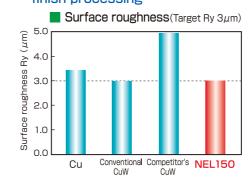
Example 1: Tungsten carbide, machining depth 5mm, rough processing

Conventio	nal CuW	NEL150	
	Wear length 1.19mm	*	Wear length 0.42mm
		†	


Example 2: Tungsten carbide 28.5 mm thick, drilling through hole


■Processing conditions

Work piece: Cemented carbide (G5) Machine: MITSUBISHI, NC EDM EA type



Characteristics of rough processing

Characteristics of finish processing

Property

	Physical properties				
Material	Electrical conductivity (%IACS)	Hardness (H _R B)			
Cu	100	56			
Conventional CuW	26	93			
NEL150	56	80			

- (Round) 3-10mm dia. and up to 100 mm long.
- (Rectangle/square) Up to 150 mm × 150 mm sq. (special order)
- Please contact us for sizes and specifications of stocked products
- ·Standard sizes and specifications are subject to

Standard sizes

■ Rod/disk

Diameter	Thickness (Length)
*Ø3~10mm	50mm
Ø15~45mm	25,30,50mm
Ø50~160mm	20,25,30~45mm

*Material "NEL 120" for small diameter

Plate

Size	Thickness
100×100mm	10~30mm

A type(Ag-W)

A type (Ag-W) is a sintered contact material produced by combining silver that has a high electrical conductivity and tungsten that has a high melting point. Its beneficial characteristics include superior arcing resistance and adhesion resistance in high current areas. Many years of application have proven its high reliability. In addition, it has superior performance as an electrode used for EDM.

C type(Cu-W)

C type (Cu-W) is an alloy based on the conductive properties of copper and arcing resistance of tungsten. It is a contact material that demonstrates high performance with low dissipation, high adhesion resistance and arcing resistance and as such is used for arcing chips in gas circuits. In addition, this material is suitable for electrode to EDM.

KA type(Ag-WC)

KA type (Ag-WC) is a contact material composed of tungsten carbide that has high resistance to oxidation, coupled with silver that has good electrical conductance. It demonstrates a high efficiency when used in low voltage/high current contacts because there is no change in the contact resistance and it has superior adhesion and electrical overload resistance.

KX•KAG type(Ag-WC-Gr)

KX/KAG type (Ag-WC-Gr) Contact materials made by adding graphite to silver WC. By doing this, the low resistance contact property and adhesion resistance can be improved.

AN type(Ag-Ni)

AN type (Ag-Ni) is a alloy primarily composed of Ag and Ni. Contact material for small load equipment having less material migration with superior mechanical properties and adhesion resistance.

AG type(Ag-Gr)

AG type (Ag-Gr) is a alloy having graphite added to silver manufactured by powder metallurgy. Its mechanical strength is not high, but the adhesion resistance and low-contact resistance are superior to make this material suitable for applications that require reliability in operation of equipment.

Hyper Materials | 36 35 | Hyper Materials

Powder products Precautions in use and handling

- Precautions in storage
- a. If tungsten powder is heated in air, oxidation occurs, and reaction becomes more intense at high temperatures. The container should be sealed and stored away from sparks, flames and high temperature areas.
- b. Fine tungsten powder (particle size under 2μ m) and molybdenum powder (particle size under 3μ m) are specified by the fire law as metal powder in the second category of hazardous materials. For storage or handling of the specified quantities or more, use facilities defined by the fire law. For storage and handling under the specified quantities, criteria are defined by respective municipal ordinances.
- 2 Precautions in handling
- a. Avoid approaching sparks, flames and high-temperature elements, and heating.
- b. Handle in such a manner as to generate the least possible powder dust.
- c. Handle in a well ventilated area, and be careful not to inhale airborne dust.
- d. Install a dust collector and/or ventilation equipment as necessary.
- e. Wear protective goggles, protective mask, protective gloves and other protective equipment as necessary

Cemented carbide tool products Precautions in use and handling

1 Precautions in handling

- a. While cemented carbide materials are extremely hard, they are characterized as brittle materials. Therefore, they may break from impact, forced tightening, etc.
- b. Since cemented carbide materials have large specific gravities, carefully handle as heavy lifts in the case of large products and large quantities
- c. Cemented carbide materials differ in thermal expansion coefficients from other metal materials. Therefore, shrink-fit and expansion-fit products may break if the operating temperature is extremely higher (lower) than the design
- d. Be careful about the storage conditions of cemented carbide materials because a drop in strength is caused by corrosion with grinding fluid, lubricating fluid, moisture content, etc.
- 2 Precautions in processing
- a. Cemented carbide tools may drop in strength depending on the surface conditions. Be sure to use a diamond grinding wheel for finishing.
- b. Cemented carbide tools generate dust when ground. Since inhalation of a large amount of dust can be harmful to the body, install ventilation equipment and wear protective equipment such as protective goggles, protective mask and protective gloves. If dust has stuck to the skins or gotten in the eyes, wash it out with running water immedi-
- c. Since waste includes heavy metals when cemented carbide tools or brazed products are ground, dispose of waste with reliability
- d. For regrinding cemented carbide tools, check that there is no crack after regrinding.
- e. Cemented carbide materials or products may crack if marked with a laser, an electric pen, etc. Do not mark parts
- f. If cemented carbide materials are discharge-machined, residual cracks will occur on the surface, causing a drop in strength. Therefore, completely remove cracks by grinding if necessary.
- g. Exercise caution when brazing cemented carbide materials since if they are brazed at a temperature excessively lower or higher than the melting temperature of brazing, they may fall off or break.

Oxidation removing method

Mothada ta ramaya ayidatiar

vietnous to remove	OXIDATION	
Oxidation state	Tungsten	Molybdenum
Heavy oxidation	Dip parts in a solution of hydrofluoric acid (55%) and nitric acid (67.5%) mixed by a volume ratio of 1:1, then dip them in sodium hydroxide (6%) solution.	Dip parts in a solution of hydrofluoric acid (55%), nitric acid (67.5%) and acetic acid (90%) mixed by a volume ratio of 1.5:5:2, then dip them in hydrochloric acid (35%) solution.
Medium oxidation	Dip parts in a solution of hydrofluoric acid (55%), nitric acid (67.5%) and acetic acid (90%) mixed by a volume ratio of 1:1:1, then dip them in sodium hydroxide (6%) solution. Or, dip parts in hydrogen peroxide (35%) solution and boil them.	Dip parts in a solution of hydrofluoric acid (55%), nitric acid (67.5%), acetic acid (90%) and phosphoric acid (75%) mixed by a volume ratio of 1.5:5:2:1, then dip them in hydrochloric acid (35%) solution. Or, dip parts in a solution of hydrochloric acid (35%) and nitric acid (67.5%) mixed by a volume ratio of 3:1, then dip them in hydrochloric acid (35%) solution.
Slight oxidation	Dip parts in sodium hydroxide (10%) and boil them.	Dip parts in hydrochloric acid (35%).

Remarks: Regardless of cleaning methods, after removing oxides, wash and dry the parts fully.

Vietal products Precautions in use and handling

1) Precautions for storage

(1) Fine tungsten powder of particle sizes smaller than 2μ m and fine molybdenum powder of particle sizes smaller than $3\mu m$ are classified as flammable solids in Category II in the Fire Service Act and must be stored in accordance with the Fire Service Act.

Note: Applicable to storage in Japan. Follow all the local laws & regulations for storage in your country.

- (2) Fine tungsten and molybdenum powders ignite and burn when brought close to a flame or kept at high temperatures. Their containers must be sealed and stored away from sparks, flames and high temperature areas.
- Particle Size Class of Hazardous Material Designated Quantity Category 1 flammable solid. Less than 1 um 100kg Category 2 flammable solid, hazard class II Tungsten powder 1 μ m or over, less than 2μ m 500kg 2µm min. Nonhazardous materials Category 2 flammable solid, Less than 3µm 500kg Molybdenum powde hazard class 🎚 3µm min Nonhazardous materials

Note: Applicable to storage in Japan, Follow all the local laws & regulations for storage in your country.

(3) Drawn wire (black wire) and hot finished sheets / plates (forged/hot rolled) can easily be stored because strong adhesion of oxide layer makes them durable for a relatively long-term storage even if left in the air. However, since heat-treated, chemical-treated and electrolytically polished wires easily oxidize, if such wires are to be stored for about one week, the storage environment should be such that humidity is below 60% and temperature below 28°C and wires should be isolated from chemicals. Accordingly, wires should be stored in a desiccator or air-conditioned place (constant temperature/constant humidity) and handled with great care so as not to touch the surface

Range of hazardous materials

- (4) Cold rolled and machined sheets / plates also oxide on the surface relatively easily and therefore should be stored in dry atmosphere.
- (5) Ultrafine wires approximately 10 µm in diameter easily stick to each other as a result of oxidation, and cannot be drawn or regenerated. Store them in a desiccator and control them with the greatest care so as not to damage the flanges of spools even while waiting between processes
- (6) Thin wires on spools will suffer winding failure or entanglement if vibration or steep change in temperature is given with the spools held horizontal.

2) Precautions for use

- (1) If chemically treated wires have oxidized and discolored when left in the air, even if they are hydrogen-furnace-treated for regeneration, the surface becomes matted and therefore their ductility deteriorates. Accordingly, in order to keep the original ductility in the case of wires, regeneration of approximately 5% reduced MG by electrolytic polishing is necessary.
- (2) When the surface of molybdenum or tungsten sheets / plates has oxidized slightly; for example, when blue oxide film has stuck to the mirror finished surface of cold rolled sheet, it may be removed by wiping with cloth moistened with water or hot water, though it depends on the degree of oxidation. However, if oxides have stuck firmly and are hard to remove by this method, they need to be removed by using acid or alkaline solution as described in the table at the bottom of page 37.
- (3) The wire on a spool must not be rewound as a rule. Even if rewinding is necessary, straightness is impaired when straightness-emphasized wire is strongly wound on the spool for the purpose of preventing looseness. Ensure that the inverse tension does not exceed 10% of the tensile strength.
- (4) Fully recrystallized wires, rods and sheets / plates are likely to be brittle due to their properties. Do not give shocks during handling.

3 Contamination embrittlement

- (1) For removing the graphite layer from black wires by hydrogen, use wet hydrogen of a dew point of +10°C or over and perform removal at 1300°C to 1500°C. As for heat treatment of graphite-removed wires (chemically finished or annealed wires, etc.), ensure that no oils, fats or sweat stick to them or completely remove them in the preced-
- (2) For heat treatment of molybdenum sheets / plates (removal of strain), use reducing atmosphere (preferably dry hydrogen above-40°C) and perform treatment at 850°C to 950°C. As for sheets / plates from which oxide film has been removed (chemically finished, cold rolled, machined, etc.), ensure that no oils, fats or sweat stick to them or completely remove them in the preceding process, as with graphite-removed wires.
- (3) Chemically polished, heat treated, electrolytically polished and machined materials subjected to heat treatment at above 800°C must be kept away from contact with nickel, iron, cobalt and their alloy parts such as tweezers, guide pulleys and boats for furnaces. This is necessary to prevent occurrence of pinholes due to melting on the contact area and embrittlement . Also, similar phenomena will occur if wires to which iron rust powder has stuck are heat treated.
- (4) For heat treatment of materials (wires, rods and sheets / plates), take great care in maintaining the hydrogen furnace and keep it clean.
- ①When replacing furnace heaters, refractories that have discolored markedly must not be reused, but must be replaced with new ones.
- @After replacing furnace heaters, fully heat the furnace without contents to remove water from the materials inside the furnace so that the life of the tungsten/ molybdenum heater will not be shortened.
- 3Do not contaminate a heat-treating furnace for molybdenum materials by placing jigs and fixtures made of other materials such as iron rods, nickel boats, carbon, stainless steel and brass.
- (4)Do not use the same heat-treating furnace for heat treatment of nickel and copper wires to prevent contamination.
- (5) Prevent sticking of getter components such as red phosphorus and zirconium used during manufacture of lamps as it may cause embrittlement.

4 Machining

- (1) Wires and rods of 0.2 mm or more in diameter and sheets / plates of 0.2 mm or more in thickness can be processed (bent, punched, cut, etc.) easily when heated. A recommended temperature is 600°C to 800°C. The optimum temperature varies depending on the history internal strain, etc. of materials
- For example, to cut a 2-mm or thicker sheet, a hacksaw (hand saw) or grinding cutter needs to be used to cut them at normal temperature or a shear cutter to cut them
- (2) If cracked wires, rods or sheets / plates having a fiber structure are stressed by pressing, bending, squeezing, twisting, etc., the cracks (laminar cracks) will propagate. Therefore, when cutting or punching them, it is necessary to always control the cutter edge and clearance so that the cracks will not come to the cut ends.

5 Attention for security

- (1) Handle products in a well-ventilated place so that you will not take in tungsten or molybdenum powder and wear a dust respirator, protective goggles, protective gloves and other protective equipment to prevent inhalation of dust. Prior to meals and smoking, wash your hands with soap.
- Reference:Environmental Index by ACGIH(American Conference of Governmental Industrial Hygienists) on the shop floor is as follows: Molvbdenum
- Tungsten Time-weighted average based on eight-hour day (TLV-TWA) 5mg/m 10mg/m² Short term exposure limit based on 15 minutes (TVL-STEL) 10mg/m
- (2) Handle products in such a manner as to generate as little powder dust as possible and prevent powder dust from coming in contact with sparks, flames and high-temperature elements.
- (3) When bending and machining wires, rods, sheets / plates, wear protective goggles, protective mask, protective gloves and other necessary protective equipment. Note that wires, even if thin, are very tough and therefore never try to wind wires around your hand to pull to cut them off.
- (4) Thoriated tungsten wires and rods contain a radioactive element "thorium" and release a small amount of radiation. Accordingly, to store them in a large quantity, store them in a place isolated from people. Inhaling powder dust produced during processing of their ends or fumes generated during welding may damage the health. When working on them, ensure sufficient dust collection is working and always wear protective goggles, protective mask, protective gloves and other necessary protective equipment. Prior to meals and smoking after working with them, wash your hands with soap.
- (5) Arcs that are generated during welding can damage the eyes and skins. Always wear a face shield to shield your face and eyes from arcs, leather gloves and other necessary protective equipment. Touching the welding rod or electrode and the base material during welding can cause an electric shock. Never touch the electrode and live parts during welding.

6 Others

- (1) For welding, such methods as TIG welding, butt welding, electron beam welding and plasma welding are used. Keep in mind, however, that the welded part will become very brittle.
- (2) For polishing, various methods are available such as chemical polishing, electrolytic polishing, grinder polishing and tumbler polishing. Choose a method suitable for your purpose.

37 | Hyper Materials Hyper Materials | 38